最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小支撑树(minimum spanning tree)算法。给定一个无向图G,并且它的每条边均权值,则MST是一个包括G的所有顶点及边的子集的图,这个子集保证图是连通的,并且子集中所有边的权值之和为所有子集中最小 ...
这篇介绍的是最小支撑树,常见的有Prim算法和Krustal算法。 支撑树:连通图G的某一无环连通子图T若覆盖G中所有的顶点,则称作G的一颗支撑树或生成树 spanning tree 。 支撑树必须覆盖所有的顶点,并且不能有环路,因此是禁止环路前提下的极大子图,也是保持通路前提下的最小子图。一个图可能有很多支撑树,它们都包含n个顶点和n 条边。 最小支撑树:在带权网络G所有的支撑树中,成本最低的称 ...
2017-07-21 17:30 0 1436 推荐指数:
最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小支撑树(minimum spanning tree)算法。给定一个无向图G,并且它的每条边均权值,则MST是一个包括G的所有顶点及边的子集的图,这个子集保证图是连通的,并且子集中所有边的权值之和为所有子集中最小 ...
首先看一下三者的定义: 定义1 对于图G=(V,E)来说,最小支配集指的是从V中取尽量少的点组成一个集合,使得对于V中剩余的点都与取出来的点有边相连。也就是说,设V‘是图G的一个支配集,则对于图中的任意一个顶点u,要么属于集合V’,要么与V‘中的顶点相邻。在V’中出去任何元素 ...
一:最小支配集 考虑最小支配集,每个点有两种状态,即属于支配集合或者不属于支配集合,其中不属于支配集合时此点还需要被覆盖,被覆盖也有两种状态,即被子节点覆盖或者被父节点覆盖.总结起来就是三种状态,现对这三种状态定义如下: 1):dp[i][0],表示点 i 属于支配集合,并且以点 i 为根 ...
首先看一下三者的定义: 定义1 对于图G=(V,E)来说,最小支配集指的是从V中取尽量少的点组成一个集合,使得对于V中剩余的点都与取出来的点有边相连。也就是说,设V‘是图G的一个支配集,则对于图中的任意一个顶点u,要么属于集合V’,要么与V‘中的顶点相邻。在V’中出去任何元素后V ...
定义: 最小支配集:对于图G = (V, E) 来说,最小支配集指的是从 V 中取尽量少的点组成一个集合, 使得 V 中剩余的点都与取出来的点有边相连.也就是说,设 V' 是图的一个支配集,则对于图中的任意一个顶点 u ,要么属于集合 V', 要么与 V' 中的顶点相邻. 在 V' 中除去任 ...
定义 最小支配集:对于图G = (V, E) 来说,最小支配集指的是从 V 中取尽量少的点组成一个集合, 使得 V 中剩余的点都与取出来的点有边相连.也就是说,设 V' 是图的一个支配集,则对于图 中的任意一个顶点 u ,要么属于集合 V', 要么与 V' 中的顶点相邻. 在 V' 中 ...
Apriori算法有支持度和置信度两个概念,都是在执行算法之前自己设定的,在每一次迭代过程后,大于支持度的项集被保留为频繁项集,最后生成的规则由最终的频繁项集组成。 一、支持度 ...
给定一个无向图G =(V,E),其中V表示图中顶点集合,E表示边的集合。G的最小控制顶点集合为V的一个子集S∈V;假设集合R表示V排除集合S后剩余顶点集合,即R∩S=∅,R∪S=V;则最小控制顶点集合S满足约束条件:R中任意一个顶点至少与S的一个顶点直接相连。给定一个图,求出最小控制集 ...