目的: 提升深度神经网络的性能。 一般方法带来的问题: 增加网络的深度与宽度。 带来两个问题: (1)参数增加,数据不足的情况容易导致过拟合 (2)计算资源要求高,而且在训练过程中会 ...
致网友:如果你不小心检索到了这篇文章,请不要看,因为很烂。写下来用于作为我的笔记。 年,在LSVRC large Scale Visual Recognition Challenge 中,Google团队凭借 googLeNet 网络取得了 the new state of the art. 论文 Going deeper with convolutions 就是对应该网络发表的一篇论文 主要内容 ...
2017-06-01 21:15 0 5339 推荐指数:
目的: 提升深度神经网络的性能。 一般方法带来的问题: 增加网络的深度与宽度。 带来两个问题: (1)参数增加,数据不足的情况容易导致过拟合 (2)计算资源要求高,而且在训练过程中会 ...
(GoogLeNet)Going deeper with convolutions Inception结构 目前最直接提升DNN效果的方法是increasing their size,这里的size包括depth和width两方面。在有足够的labeled training data 时这种 ...
论文地址 在该论文中作者提出了一种被称为Inception Network的深度卷积神经网络,它由若干个Inception modules堆叠而成。Inception的主要特点是它能提高网络中计算资源的利用率,这得益于网络结构的精心设计(基于 Hebbian principle ...
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection 当前方法的问题 使用VGG、ResNet等为图像分类任务设计的网络提取深层特征,但是,这些骨干网络最初是为图像分类任务设计的,它们提取的特征 ...
( 这篇博文为原创,如需转载本文请email我: leizhao.mail@qq.com, 并注明来源链接,THX!) 本文主要分享了一篇来自CVPR 2018的论文,A Closer Look at Spatiotemporal Convolutions for Action ...
大致看了看这个paper, 很novel. 我的观点: 在traditional convolutional neural netwoks 中,我们通常会depend 于 extract ...
Deeper and Wider Siamese Networks for Real-Time Visual TrackingUpdated on 2019-04-01 16:10:37 Paper (arXiv V3):https://arxiv.org/pdf/1901.01660.pdf ...
CondConv 2019-NIPS-CondConv: Conditionally Parameterized Convolutions for Efficient Inference 来源:ChenBong 博客园 Institute:Google Brain ...