线性代数(Linear Algebra),作为大学理工科开设的基础课程,如今已成为机器学习中用来表征数据的基本工具,其重要性不言而喻。本科曾学习过这门课程的我,当时对里面的很多概念并没有理解清楚,尤其是线性代数的几何意义。后来在研一上半学期我又重新回顾了一次。这是我阅读完Lay D.C的《线性代数 ...
不想学带花树,于是乎就学了一发高斯消元版的一般图匹配 这个东西的优点肯定是有的,最主要的是不用去学习带花树的那一套理论了,只需要会用高斯消元就行,代码难度相比带花树来说小一些。当然缺点也有,最要命的就是常数太大,不卡一下常都过不了UOJ 贴一份UOJ 的板子,懒得解释了,不要介意 UPD:一开始贴的板子似乎有错,重新贴一个应该没错的板子好了 View Code 注意,直接写的话会在第 个测试点TL ...
2017-05-25 17:14 9 537 推荐指数:
线性代数(Linear Algebra),作为大学理工科开设的基础课程,如今已成为机器学习中用来表征数据的基本工具,其重要性不言而喻。本科曾学习过这门课程的我,当时对里面的很多概念并没有理解清楚,尤其是线性代数的几何意义。后来在研一上半学期我又重新回顾了一次。这是我阅读完Lay D.C的《线性代数 ...
线性方程组: 包含变量x1,x2,……,xn的线性方程是形如 a1x2 +a2x2+...+a3x3 = b 的方程,其中b与系数a1 ,a2 ,…… ,an是实数或者复数,通常是已知数,下标n可以是任意正整数。 线性方程组的解有下列三种情况: ①无解 ...
一、行列式性质 二、行列式的运算 1、 2、 3、 4、代数余子式 5、 6、多个A或M相加减 7、 三、矩阵运算(加减、相乘) 1、矩阵加减 2、矩阵相乘 3、矩阵取绝对值 四、转置、秩 ...
目录 线性方程组 概述 初等行变换与高斯消元 齐次方程组 有限维向量空间 n维向量 向量组 线性相关与无关 向量组的秩 矩阵 矩阵的秩 矩阵的相抵标准型 ...
https://www.bilibili.com/video/av22727915/?p=1 线性代数这门课主要描述这样的问题, 如何解多元一次方程组,即一个线性方程式的系统 解这个系统,就是要回答下面的问题,有没有解,多少解,怎么求解 为什么要研究一次线性 ...
前言 某次模拟赛被矩阵虐哭,补一波线代 这篇博客偏入门,概念较多,算法相关较少 大力膜拜\(3B1B\)的线性代数的本质系列 (参考资料来源,或者干脆叫观影总结吧……) 完全就是观影总结\(qwq\) 记号:不作特殊说明,本文中的大写字母均表示某个矩阵,小写字母均表示某个向量 顺便 ...
线性方程组 我们将要学的:A system of linear equations (多元一次聯立方程式) 由于本课程中m,n都很大,因此要采用与高中解方程组不同的视角,如: 是否有解 是否有唯一解 怎样找到解 行列式 ...
线性代数总结1.矩阵乘法A$\times$B=C $ \ \ \ \ \ \ $$C[i][j]$表示$\sum{A[i][k]\times B[k][j]}$$ \ \ \ \ $$DP$ 思想$G\times G$ $ \ \ \ G[i][j]$ 表示从$i$到$j ...