原文:SparkMLlib回归算法之决策树

SparkMLlib回归算法之决策树 一 ,决策树概念 ,决策树算法 ID ,C . ,CART 之间的比较: ,ID 算法在选择根节点和各内部节点中的分支属性时,采用信息增益作为评价标准。信息增益的缺点是倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息。 ID 算法只能对描述属性为离散型属性的数据集构造决策树,其余两种算法对离散和连续都可以处理 ,C . 算法实例介绍 ...

2017-05-24 16:24 3 2454 推荐指数:

查看详情

SparkMLlib分类算法决策树学习

SparkMLlib分类算法决策树学习 (一) 决策树的基本概念     决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成 ...

Sun May 21 19:32:00 CST 2017 0 4105
决策树-回归

决策树常用于分类问题,但是也能解决回归问题。 在回归问题中,决策树只能使用cart决策树,而cart决策树,既可以分类,也可以回归。 所以我们说的回归就是指cart。 为什么只能是cart 1. 回想下id3,分裂后需要计算每个类别占总样本的比例,回归哪来的类别,c4.5也一样 ...

Mon Apr 08 02:45:00 CST 2019 0 1161
决策树回归

解决问题   实现基于特征范围的树状遍历的回归。 解决方案   通过寻找样本中最佳的特征以及特征值作为最佳分割点,构建一棵二叉树。选择最佳特征以及特征值的原理就是通过满足函数最小。其实选择的过程本质是对于训练样本的区间的分割,基于区间计算均值,最终区域的样本均值即为预测值 ...

Thu Jan 09 03:15:00 CST 2020 0 2710
回归决策树

分类决策树的概念和算法比较好理解,并且这方面的资料也很多。但是对于回归决策树的资料却比较少,西瓜书上也只是提了一下,并没有做深入的介绍,不知道是不是因为回归用的比较少。实际上网上常见的房价预测的案例就是一个应用回归的很好的案例,所以我觉得至少有必要把回归的概念以及算法弄清楚 ...

Sun May 19 05:41:00 CST 2019 0 717
决策树(二)决策树回归

回归 决策树也可以用于执行回归任务。我们首先用sk-learn的DecisionTreeRegressor类构造一颗回归决策树,并在一个带噪声的二次方数据集上进行训练,指定max_depth=2: 下图是这棵的结果: 这棵看起来与之前构造的分类类似。主要 ...

Mon Mar 02 20:09:00 CST 2020 0 1443
机器学习--决策树回归及剪枝算法

上一篇介绍了决策树之分类构造的几种方法,本文主要介绍使用CART算法构建回归及剪枝算法实现。主要包括以下内容: 1、CART回归的介绍 2、二元切分的实现 3、总方差法划分特征 4、回归的构建 5、回归的测试与应用 6、剪枝算法 一、CART回归的介绍 回归与分类 ...

Tue Jan 23 09:08:00 CST 2018 1 6806
决策树算法

算法思想 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。 其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。 使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出 ...

Tue Jul 10 00:38:00 CST 2018 0 12904
决策树算法

利用ID3算法来判断某天是否适合打网球。 (1)类别属性信息熵的计算由于未分区前,训练数据集中共有14个实例, 其中有9个实例属于yes类(适合打网球的),5个实例属于no类(不适合打网球), 因此分区前类别属性的熵为: (2)非类别属性信息熵 ...

Sun Apr 23 07:04:00 CST 2017 0 5437
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM