原文:SparkMLib分类算法之朴素贝叶斯分类

SparkMLib分类算法之朴素贝叶斯分类 一 朴素贝叶斯分类理解 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。简单来说,朴素贝叶斯分类器假设样本每个特征与其他特征都不相关。举个例子,如果一种水果具有红,圆,直径大概 英寸等特征,该水果可以被判定为是苹果。尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的。尽管是带 ...

2017-05-19 21:50 0 3492 推荐指数:

查看详情

朴素分类算法原理

一个简单的例子 朴素算法是一个典型的统计学习方法,主要理论基础就是一个公式,公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X ...

Fri May 05 03:21:00 CST 2017 1 12244
朴素分类算法

贝叶斯定理是关于随机事件A和B的条件概率的一则定理(比如常见的:P(A|B)是在B发生的情况下A发生的可能性)。 朴素的含义是各特征相互独立,且同等重要。某些 分类算法均以贝叶斯定理为基础。由此产生了 朴素分类算法朴素分类算法的思想基础是:对于给出 ...

Tue Oct 22 21:54:00 CST 2019 0 579
分类算法 - 朴素

  朴素(Naive Bayesian)是基于贝叶斯定理和特征条件独立假设的一种分类算法朴素想必是很多人在刚学习机器学习时想去第一个学习的算法,因为它朴素呀、简单呀(我记得当时的想法就是这样)。它真的那么简单么?今天我们就来讨论一下这个“简单”的机器学习算法。 贝叶斯定理 ...

Wed Nov 08 00:06:00 CST 2017 0 1305
朴素分类算法

1.理解分类与监督学习、聚类与无监督学习。 简述分类与聚类的联系与区别。 (1)分类:给数据贴标签,通过分析已有的数据特征,对数据分成几类,已知分类结果。然后引入新数据对其归类。分类可以提高认知效率,较低认知成本。 (2)聚类:不知分类结果,通过数据一定的相似性,把那些相似的数据聚集在一起 ...

Mon Nov 19 05:07:00 CST 2018 0 726
朴素分类

先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,c ...

Thu Jul 12 01:20:00 CST 2012 5 19654
分类算法朴素分类(Naive Bayesian Classification)

1、什么是分类 分类是一种重要的数据分析形式,它提取刻画重要数据类的模型。这种模型称为分类器,预测分类的(离散的,无序的)类标号。例如医生对病人进行诊断是一个典型的分类过程,医生不是一眼就看出病人得了哪种病,而是要根据病人的症状和化验单结果诊断病人得了哪种病,采用哪种治疗方案。再 ...

Thu Oct 16 23:46:00 CST 2014 0 13178
朴素算法应用——垃圾短信分类

理解公式其实就只要掌握:1、条件概率的定义;2、乘法原理 \[P(c_i|x) = \cfrac{P(x|c_i)P(c_i)}{P(x)} \] 这里 \(x\) 是一个向量,有几个特征,就有几个维度。朴素就假设这些特征独立同分布,即 \[P(x|c_i) = P ...

Mon Oct 29 23:37:00 CST 2018 0 1142
朴素算法分类算法,贝叶斯定理原理

朴素算法分类算法,贝叶斯定理原理 分类算法是统计学的一种分类方法,它是一类利用概率统计知识进行分类算法。在许多场合,朴素(Naïve Bayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,而且方法简单、分类准确率高、速度快 ...

Mon Apr 23 08:24:00 CST 2018 0 5817
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM