假如现在有 \(\ell\) 个同一分布的观察数据,每条数据都有 \(p\) 个特征。如果现在加入一个或多个观察数据,那么是否这些数据与原有的数据十分不同,甚至我们可以怀疑其是否属于同一分布呢?反过来 ...
对比与有正负样例的二分类SVM,one class SVM可以训练出一个高维超球面,把数据尽可能紧的包围起来。 场景: 花果山上的老猴子,一生阅猴无数,但是从来没有见过其它的物种。有一天,猪八戒来到花果山找它们的大王,老猴子一声令下,把这个东西给我绑起来 这里老猴子很清楚的知道这个外来物种不是同类,但是它究竟是什么,不得而知。 老猴子见过很多猴,它知道猴子的特征,而外来生物明显不符合这个特征,所以 ...
2017-04-07 10:31 0 9035 推荐指数:
假如现在有 \(\ell\) 个同一分布的观察数据,每条数据都有 \(p\) 个特征。如果现在加入一个或多个观察数据,那么是否这些数据与原有的数据十分不同,甚至我们可以怀疑其是否属于同一分布呢?反过来 ...
novelty detection:当训练数据中没有离群点,我们的目标是用训练好的模型去检测另外发现的新样本 outlie ...
这里先列出 sklearn 官方给出的使用高斯核(RBF kernel) one class svm 实现二维数据的异常检测: 效果如下图: 下面简单介绍一下 sklearn.svm.OneClassSVM 函数的用法: decision_function(self, X) 点到 ...
Deep one-class classification 2019-03-17 23:09:59 zpainter 阅读数 1027 收藏 文章标签: 单分类问题异常检测 更多 分类专栏: 论文 ...
此边界作为衡量标准,边界外就是异常; 如下图 这种算法我们称为 单分类算法; 解决单分类 ...
SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器。 目前,构造SVM多类分类器的方法主要有两类:一类是直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类。这种方法看似简单 ...
前言 最近老板有一个需求,做单样本检测,也就是说只有一个类别的数据集与标签,因为在工厂设备中,控制系统的任务是判断是是否有意外情况出现,例如产品质量过低,机器产生奇怪的震动或者机器零件脱落等。相 ...
完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 前言 ...