从投影的角度理解矩阵乘法: 向量x在以ai作为每个坐标轴单位向量的新坐标系的坐标 通俗讲:在矩阵中,以矩阵中的行矩阵作为一个具体的点和原点的连线作为坐标轴,所有的行也是这样从而组成一个坐标系,求原来向量在新的坐标系中的坐标点。 特点:根据矩阵中的行组成的坐标系 从坐标映射角度理解矩阵乘法 ...
转载自http: blog.sina.com.cn s blog vdux.html 矩阵的几何意义,它可以总结为 个容易理解的特性。 变换 Transformations 你应该已经知道变换 transformation ,它将任意 D点的坐标变换到另一个 D点的坐标。下图你可以看到 个基本变换的例子: 第一个变换只是简单地将 D空间中的所有点移动到左下方,这种变换叫做平移 translatio ...
2017-04-05 15:12 0 4269 推荐指数:
从投影的角度理解矩阵乘法: 向量x在以ai作为每个坐标轴单位向量的新坐标系的坐标 通俗讲:在矩阵中,以矩阵中的行矩阵作为一个具体的点和原点的连线作为坐标轴,所有的行也是这样从而组成一个坐标系,求原来向量在新的坐标系中的坐标点。 特点:根据矩阵中的行组成的坐标系 从坐标映射角度理解矩阵乘法 ...
和特征向量 矩阵最大的应用之一就是在几何变换上,比如旋转,平移,反射,以及倍数变大或变小。 举例: ...
上次写了篇文章来阐述几何投影与傅里叶级数的联系,今天我想谈谈几何投影与最小二乘法的联系,这种联系的好处是不管多复杂的公式,又可以被瞬间记住了。本文的中心思想是:最小二乘法中的几何意义是高维空间中的一个向量在低维子空间的投影。这个思想在MIT教授Gilbert Strang的线性代数的公开课程上有 ...
矩阵行列式的几何意义 行列式的定义: 行列式是由一些数据排列成的方阵经过规定的计算方法而得到的一个数。当然,如果行列式中含有未知数,那么行列式就是一个多项式。它本质上代表一个数值,这点请与矩阵区别开来。矩阵只是一个数表,行列式还要对这个数表按照规则进一步计算,最终得到一个实数、复数 ...
转载:矩阵行列式的几何意义 - Tsingke - 博客园 (cnblogs.com) 矩阵行列式的几何意义 行列式的定义: 行列式是由一些数据排列成的方阵经过规定的计算方法而得到的一个数。当然,如果行列式中含有未知数,那么行列式就是一个多项式。它本质上代表一个 ...
作者:童哲链接:https://www.zhihu.com/question/36966326/answer/70687817来源:知乎著作权归作者所有,转载请联系作者获得授权。 行列式这个“怪物”定义初看很奇怪,一堆逆序数什么的让人不免觉得恐惧,但其实它是有实际得不能更实际的物理意义 ...
...
向量:[a1, a2, a3, ..., an]矩阵: a11, a12, a13, ..., a1n a21, a22, a23, ..., a2n ... an1, an2, an3, ..., ann 现只讨论这个n阶非奇异方阵,如果一组向量彼此线性无关——它们就可以 ...