1 梯度法 就是直接对目标函数进行计算,然后判断其是否凸。具体地,就是计算目标函数的一阶导数和二阶导数。然后作出判断。 凸函数的一阶充要条件 等号右边是对函数在x点的一阶近似。这个条件的意义是,对于函数在定义域的任意取值,函数的值都大于或者等于对函数在这点的一阶近似。用图来说 ...
梯度法 就是直接对目标函数进行计算,然后判断其是否凸。具体地,就是计算目标函数的一阶导数和二阶导数。然后作出判断。 凸函数的一阶充要条件 等号右边是对函数在x点的一阶近似。这个条件的意义是,对于函数在定义域的任意取值,函数的值都大于或者等于对函数在这点的一阶近似。用图来说明就是: 通过图可以很清楚地理解这个充要条件,但是,具体在应用中,我们不可能对每一个点都去计算函数的一阶导数吧,因此下面这个充 ...
2017-03-28 22:20 1 6212 推荐指数:
1 梯度法 就是直接对目标函数进行计算,然后判断其是否凸。具体地,就是计算目标函数的一阶导数和二阶导数。然后作出判断。 凸函数的一阶充要条件 等号右边是对函数在x点的一阶近似。这个条件的意义是,对于函数在定义域的任意取值,函数的值都大于或者等于对函数在这点的一阶近似。用图来说 ...
今天想不明白方差为什么>=0了, 因为我看Jensen不等式是这么说的(看的是英文版本): 如果是convex, 那么E(g(X))>=g(E(X)). 以前查过字典, 知道concave是凹, convex是凸. 我想, 诶不对, g(x)=x^2是凹函数, 它二阶导=2>0. ...
1. 概述 \(\quad\)之前介绍了凸集相关的定义与部分性质,其实不是特别完全,因为单单的几篇博客是无法把凸集这一块完全讲全的,所以凸集变换这里也只讲几个稍微重要的变换。来捋一下学习的脉络吧,凸问题由求解变量、约束与目标函数组成,其中变量的可行域必须是凸集。所以下面要介绍的就是涉及到约束 ...
目录 1. 凸集 2. 仿射集 3.凸函数 4.凸优化问题 最近学习了一些凸优化的知识,想写几篇随笔作为总结备忘。在此篇中我们简要地介绍一点点基本概念。 1. 凸集 **定义1. 集合$S\in\mathbb{R}^{n ...
读文章和学习过程中经常会遇到concave,convex以及down,up的组合。怎样区分呢? 下面有一些摘自网络的定义,不同情况下应有不同的定义,以下仅供参考: 定义一:当四种都存在时: 上凹(convex upward):y'>0 y''>0 下凹(convex ...
凸集 集合C内任意两点间的线段也均在集合C内,则称集合C为凸集。 \(\forall x_1, x_2 \in C, \forall \theta \in [0,1], 则 x= \theta * x_1 + (1-\theta)*x_2 \in C ...
凸集、凸函数、凸优化和凸二次规划 一、总结 一句话总结: 凸集:集合C内任意两点间的线段均包含在集合C形成的区域内,则称集合C为凸集 二、凸集、凸函数、凸优化和凸二次规划 转自或参考:凸集、凸函数、凸优化和凸二次规划https://blog.csdn.net ...
关于非凸优化的方法, https://blog.csdn.net/kebu12345678/article/details/54926287 提到,可以把非凸优化转换为凸优化,通过修改一些条件。 非凸优化问题如何转化为凸优化问题的方法:1)修改目标函数,使之转化为凸函数2)抛弃一些约束条件,使新 ...