目录 线性回归 用线性回归模型拟合非线性关系 梯度下降法 最小二乘法 线性回归用于分类(logistic regression,LR) 目标函数 如何求解$\theta$ LR处理多分类问题 ...
本次回归章节的思维导图版总结已经总结完毕,但自我感觉不甚理想。不知道是模型太简单还是由于自己本身的原因,总结出来的东西感觉很少,好像知识点都覆盖上了,但乍一看,好像又什么都没有。不管怎样,算是一次尝试吧,慢慢地再来改进。在这里再梳理一下吧 线性回归 Linear Regression 什么是回归 给定一些数据, x ,y , x ,y xn,yn ,x的值来预测y的值,通常地,y的值是连续的就是回 ...
2017-03-12 14:15 0 8206 推荐指数:
目录 线性回归 用线性回归模型拟合非线性关系 梯度下降法 最小二乘法 线性回归用于分类(logistic regression,LR) 目标函数 如何求解$\theta$ LR处理多分类问题 ...
一、Logistic回归 Logistic回归(Logistic Regression,简称LR)是一种常用的处理二类分类问题的模型。 在二类分类问题中,把因变量y可能属于的两个类分别称为负类和正类,则因变量y∈{0, 1},其中0表示负类,1表示正类。线性回归的输出值在负无穷到正无穷的范围 ...
可以参考如下文章 https://blog.csdn.net/sinat_37965706/article/details/69204397 第一节中说了,logistic 回归和线性回归的区别是:线性回归是根据样本X各个维度的Xi的线性叠加(线性叠加的权重系数wi就是模型的参数)来得 ...
SoftMax 回归(与Logistic 回归的联系与区别) SoftMax 试图解决的问题 SoftMax回归模型是Logistic回归模型在多分类问题上的推广,即在多分类问题中,类标签y可以取两个以上的值 对于Logistic回归的假设函数\(h_\theta(x) = \frac ...
一:线性logistic 回归 代码如下: 二:非线性logistic 回归(正则化) 代码如下: ...
本文主要讲解在matlab中实现Linear Regression和Logistic Regression的代码,并不涉及公式推导。具体的计算公式和推导,相关的机器学习文章和视频一大堆,推荐看Andrew NG的公开课。 一、线性回归(Linear Regression) 方法一、利用公式 ...
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完《统计学习方法》第一章之后直接就跳去了第六章 ...
前言 由于本部分内容讲解资源较多,本文不做过多叙述,重点放在实际问题的应用上。 一、线性回归 线性回归中的线性指的是对于参数的线性的,对于样本的特征不一定是线性的。 线性模型(矩阵形式):y=XA+e 其中:A为参数向量,y为向量,X为矩阵,e为噪声向量。 对于线性模型 ...