前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲 ...
奇异矩阵分解SVD 奇异矩阵分解的核心思想认为用户的兴趣只受少数几个因素的影响,因此将稀疏且高维的User Item评分矩阵分解为两个低维矩阵,即通过User Item评分信息来学习到的用户特征矩阵P和物品特征矩阵Q,通过重构的低维矩阵预测用户对产品的评分.SVD的时间复杂度是O m . 在了解奇异矩阵分解前, 先要了解矩阵分解, 矩阵分解就是特征值分解, 特征值分解和奇异值分解的目的都是一样,就 ...
2016-10-18 18:44 0 1444 推荐指数:
前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲 ...
矩阵的奇异值分解(Singular Value Decomposition,SVD)是数值计算中的精彩之处,在其它数学领域和机器学习领域得到了广泛的应用,如矩阵的广义逆,主分成分析(PCA),自然语言处理(NLP)中的潜在语义索引(Latent Semantic Indexing),推荐算法 ...
转:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 前言: PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是 ...
矩阵SVD 奇异值分解(Singular Value Decomposition)是一种重要的矩阵分解方法,可以看做是对方阵在任意矩阵上的推广。Singular的意思是突出的,奇特的,非凡的,按照这样的翻译似乎也可以叫做矩阵的优值分解。 假设矩阵A是一个m*n阶的实矩阵,则存在一个分解 ...
svd我认识我机器学习里面最扯淡的玩意了。尼玛。老实说,好多机器学习的书老是在扯svd有多高端,然后看了netflix电影推荐大赛,哇塞,冠军队就是用svd+做的。然后狠狠的下载了所有他们的论文,硬是没看明白。后来居然对svd有恐惧感。感觉这个玩意好高端似的。你看他啊,它能提高预测精度 ...
伪逆矩阵与奇异值分解(SVD) 伪逆矩阵 矩阵的逆 定义:设\(A\)是\(n\)阶方阵,如果存在\(n\)阶方阵\(B\),使得\(AB=BA=E\),则称矩阵\(A\)为可逆矩阵,矩阵\(B\)成为\(A\)的逆矩阵,记作\(A^{-1}=B\)。 注意:如果\(n\)阶矩阵 ...
有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解 ...
0 - 特征值分解(EVD) 奇异值分解之前需要用到特征值分解,回顾一下特征值分解。 假设$A_{m \times m}$是一个是对称矩阵($A=A^T$),则可以被分解为如下形式, $$A_{m\times m}=Q_{m\times m}\Sigma_{m\times m} Q_{m ...