问题:越深越好? 层数越多,参数越多,model比较复杂,数据又多的话,本来误差就越小,这为什么归因于”深“呢? 矮胖结构 v.s. 高瘦结构 真正要比较”深“和”浅“的model的时候 ...
前言: 深度学习话题十分火热,网上的资料也非常多,这的确很头疼,太容易迷失。个人认为寻找大牛的授课ppt作为入门方式就可以,跟随大牛的脚步先画出一条直线,再补充骨肉。Anyway,这篇文章十分适合机器学习初学者迅速了解深度学习,了解清楚什么是深度学习,如何做及现在最火的卷积神经网络。 教材链接:李宏毅 Let us rock .什么是机器学习 插入个人理解,可以跳过:每个函数的定义域 值域就确定了 ...
2019-08-21 15:26 0 2233 推荐指数:
问题:越深越好? 层数越多,参数越多,model比较复杂,数据又多的话,本来误差就越小,这为什么归因于”深“呢? 矮胖结构 v.s. 高瘦结构 真正要比较”深“和”浅“的model的时候 ...
Transformer英文的意思就是变形金刚,Transformer现在有一个非常知名的应用,这个应用叫做BERT,BERT就是非监督的Transformer,Transformer是一个seq2se ...
李宏毅深度学习笔记 https://datawhalechina.github.io/leeml-notes 李宏毅深度学习视频 https://www.bilibili.com/video/BV1JE411g7XF step1 神经网络 激活函数是sigmoid,红色圈是一组神经元,每个 ...
P1 一、线性回归中的模型选择 上图所示: 五个模型,一个比一个复杂,其中所包含的function就越多,这样就有更大几率找到一个合适的参数集来更好的拟合训练集。所以,随着模型的复杂度提 ...
半监督学习 什么是半监督学习? 大家知道在监督学习里,有一大堆的训练数据(由input和output对组成)。例如上图所示\(x^r\)是一张图片,\(y^r\)是类别的label。 半监督学习是说,在label数据上面,有另外一组unlabeled的数据,写成\(x^u ...
一、机器学习简介 是什么? 机器学习:给模型(函数)输入数据,输出结果。 机器学习分类: 1)监督学习:即给定输入和输出以及输出,学习函数。 2)半监督学习:数据不够,有一部分数据有输入和输出,但有一部分没有输出。 3)无监督学习:只有输入没有输出。 4)迁移学习:可以有label ...
李宏毅深度学习笔记 https://datawhalechina.github.io/leeml-notes 李宏毅深度学习视频 https://www.bilibili.com/video/BV1JE411g7XF 背景 梯度下降 假设有很多参数\(\theta\) 选择一组初始值 ...