一、定义 二维线段树,即用线段树维护一个矩阵 有两种实现方式: 1、原一维线段树的基础上,每一个节点都是一个线段树,代表第二维 下图是一个4*4矩阵 2、四分法转化为一维线段树 两种方法的空间复杂度都是n*n*log^2 第一种方法单次操作的时间复杂度是log ...
数据结构 线段树 O 引例 A.给出n个数,n lt ,和m个询问,每次询问区间 l,r 的和,并输出。 一种回答:这也太简单了,O n 枚举搜索就行了。 另一种回答:还用得着o n 枚举,前缀和o 就搞定。 那好,我再修改一下题目。 B.给出n个数,n lt ,和m个操作,每个操作可能有两种: 在某个位置加上一个数 询问区间 l,r 的和,并输出。 回答:o n 枚举。 动态修改最起码不能用静 ...
2017-01-05 22:28 40 41830 推荐指数:
一、定义 二维线段树,即用线段树维护一个矩阵 有两种实现方式: 1、原一维线段树的基础上,每一个节点都是一个线段树,代表第二维 下图是一个4*4矩阵 2、四分法转化为一维线段树 两种方法的空间复杂度都是n*n*log^2 第一种方法单次操作的时间复杂度是log ...
树状数组和线段树都是用于维护数列信息的数据结构,支持单点/区间修改,单点/区间询问信息。以增加权值与询问区间权值和为例,其余的信息需要维护也都类似。时间复杂度均为\(O(logn)\)。 树状数组 对于树状数组,编号为\(x\)的结点上统计着[\(x-lowbit(x)+1,x\)]这一段区间 ...
浅谈线段树优化DP 本篇随笔浅谈一下线段树优化DP。 一、关于DP优化的两种方式 DP算法是大家耳熟能详的最优化算法之一。 有的时候,我们设计DP的时候,需要采取措施进行DP优化来适应题目对时间空间的要求。 一般来讲,DP的优化有两种方式:第一种是针对状态设计进行优化。比如滚动数组 ...
先了解一下离散化的概念,把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。 就是他要求上限是10^9,但是可能真正用到的有用的点却只有几千或者几万而已,而如果你直接用上限来做的话,任何CPU都无法运行。 离散化在线段树方面有着很大的用途: 比如数据过大时,建立线段树无法开辟 ...
浅谈动态开点线段树 本篇随笔简单讲解一下线段树的常见优化技巧——动态开点。 要学动态开点首先得会线段树,如果不会的话,看官请走这边—— 简单线段树详解 权值线段树详解 动态开点的概念和功能 现在要让你维护一棵值域为\(10^9\)的权值线段树。 掐指一算,按线段树开的话,四倍空间 ...
MENU 1、建树(普通) 2、普通操作*4 3、差分思想*5 本文作者frankchenfu,blogs网址http://www.cnblogs.com/frankchenfu/,转载请保留此文字。 线段树是所有数据结构中,最常用的之一。线段树的功能多样,既可以代替树状数组完成 ...
浅谈可持久化Trie与线段树的原理以及实现 引言 当我们需要保存一个数据结构不同时间的每个版本,最朴素的方法就是每个时间都创建一个独立的数据结构,单独储存。 但是这种方法不仅每次复制新的数据结构需要时间,空间上也受不了储存这么多版本的数据结构。 然而有一种叫git的工具,可以维护工程代码 ...
0XFF 前言 *如果本文有不好的地方,请在下方评论区提出,Qiuly感激不尽! 0X1F 这个东西有啥用? 树套树------线段树套平衡树,可以用于解决待修改区间\(K\)大的问题,当然也可以用 树套树------树状数组套可持久化线段树,但是 线段树套平衡树 更加容易 ...