如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,这就带来了教学上的困难。” * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组 ...
线性变换就是矩阵的变换,而任何矩阵的变换可以理解为一个正交变换 伸缩变换 另一个正交变换。 正交变换可以暂时理解为 不改变大小以及正交性的旋转 反射 等变换 A P y P ,y就是特征值,P是特征向量,矩阵A做的事情无非是把P沿其P的方向拉长 缩短了一点 而不是毫无规律的多维变换 。y描述沿着这个方向上拉伸的比例。 对于满秩的n n方阵,做特征值变换,非满秩的矩阵,做奇异值变换,差别在于前者是个 ...
2016-10-18 12:58 0 5357 推荐指数:
如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,这就带来了教学上的困难。” * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组 ...
线性变换定义 直观地说,如果一个变换具有以下两条性质,我们就称它是线性的: 一是直线在变换后仍然保持为直线,不能有所弯曲(变换后对角线也必须是直线,也就是变换后的x轴和y轴保持平行且等分) 二是原点必须保持固定 总的来说,你应该吧线性变换看作是 保持网格平行且等距分布,并保持 ...
Unfortunately, no one can be told what the Matrix is. You have to see it for yourself ---Morpheus 正如墨菲斯所说:没人能够清楚地告诉你矩阵是什么,你必须自己亲自看看。 3.1 线性变换 ...
对了解矩阵、线性变换的本质有太大帮助 如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,这就带来了教学上的困难。” * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示 ...
什么是线性变换和非线性变换 一、总结 一句话总结: [①]、从数值意义上,变换即函数,线性变换就是一阶导数为常数的函数,譬如y=kx,把y=kx拓展为n维空间的映射,x、y看做n维向量,当k为常数时,易得满足同质性f(ka)=kf(a),当k为一个矩阵时,易得满足可加性f(a+b)=f ...
以灰度图像为例,假设原图像像素的灰度值为D = f(x,y), (x,y)为图像坐标,处理后图像像素的灰度值为D’ = g(x,y),则灰度变换函数可以表示为: g(x,y) = T[f(x,y)] 或 D = T[D] 要求D和D’都在图像的灰度范围之内。灰度变换函数描述了输入灰度值 ...
线性变换就相当于一个空间到另外一个空间的转换,在数学建模时经常用到,T(x)这个x可以时一个空间中的坐标,或者是基,或者是向量,线性变化就是将这些乘以一个矩阵,转换到另外一个空间来表示,这个矩阵是线性变换的数学表示,不同的矩阵代表着不同的线性变换,当然线性变换在不同的的基下由不同的矩阵表示,不同基 ...
首先,恭喜你读到了咪博士的这篇文章。本文可以说是该系列最重要、最核心的文章。你对线性代数的一切困惑,根源就在于没有真正理解矩阵到底是什么。读完咪博士的这篇文章,你一定会有一种醍醐灌顶、豁然开朗的感觉! 咱们先来说说啥叫变换。本质上,变换就是函数。 例如,你输入一个向量 [57 ...