转自github: https://github.com/heucoder/dimensionality_reduction_alo_codes 网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码;在此通过借鉴资料实现了一些经典降维算法的Demo(python),同时也给出了参考资料 ...
SVD 定义 假设 A 为 M times N 矩阵,则存在 M times M 维正交矩阵 U u ,u , cdots,u m , N times N 维正交矩阵 V v ,v , cdots,v n 和 M times N 对角矩阵 Sigma diag sigma , sigma , cdots, sigma p ,使得 A U T Sigma V ,这种矩阵分解形式成为 A 的奇异值分解 ...
2016-08-31 17:56 0 4048 推荐指数:
转自github: https://github.com/heucoder/dimensionality_reduction_alo_codes 网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码;在此通过借鉴资料实现了一些经典降维算法的Demo(python),同时也给出了参考资料 ...
降维是机器学习中很重要的一种思想。在机器学习中经常会碰到一些高维的数据集,而在高维数据情形下会出现数据样本稀疏,距离计算等困难,这类问题是所有机器学习方法共同面临的严重问题,称之为“ 维度灾难 ” ...
analysis,PCA),新数据的特征称为主成分,得到主成分的方法有两种:直接对协方差矩阵进行特征值分解和 ...
一、一些概念 线性相关:其中一个向量可以由其他向量线性表出。 线性无关:其中一个向量不可以由其他向量线性表出,或者另一种说法是找不到一个X不等于0,能够使得AX=0。如果对于一个矩阵A来说它的列是 ...
主成分分析和奇异值分解进行降维有何共同点? 矩阵的奇异值分解 当矩阵不是方阵,无法为其定义特征值与特征向量,可以用一个相似的概念来代替:奇异值。 通常用一种叫奇异值分解的算法来求取任意矩阵的奇异值: 抽象的概念要用具体的方式理解,来看几张图: 上图中的红色区域是一个以原点为中心 ...
我想如果线性代数中向量空间的基底、坐标、基变换与坐标变换的内容理解的比较成熟的话,那么对理解PCA和SVD的理解将是水到渠成的事。 一.数学基础 基底: 若α1,α2,...,αn为向量空间Rn的一线性无关的向量组,且Rn中任一向量均可由α1,α2,...,αn线性表示,则称 ...
参考: 1.http://iiec.cqu.edu.cn/wiki/index.php/SVD%E4%B8%8EPCA%E7%9A%84%E7%93%9C%E8%91%9B ...
SVD和PCA是两种常用的降维方法,在机器学习学习领域有很重要的应用例如数据压缩、去噪等,并且面试的时候可能时不时会被面试官问到,最近在补课的时候也顺便查资料总结了一下。 主成分分析PCA 对于样本集\(X_{m\times n}=\left \{x_{1};x_{2};\dots ;x_{m ...