拉普拉斯平滑(Laplace Smoothing)又称 加1平滑,常用平滑方法。解决零概率问题。 背景:为什么要做平滑处理? 零概率问题:在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0。 在文本分类的问题中,当一个词语没有在训练样本中出 ...
假设我们在做一个抛硬币的实验,硬币出现正面的概率是 theta 。在已知前 n 次结果的情况下,如何推断抛下一次硬币出现正面的概率呢 当 n 很大的时候,我们可以直接统计正面出现的次数,假设为 n ,然后可以做出推断 theta frac n n 。 但是,如果 n 很小,上述公式就不合适了。注意 硬币出现正面的概率是 theta 这句话的意思是说在实验次数趋近无穷的时候,正面出现的次数除以总抛 ...
2016-08-18 23:09 0 2822 推荐指数:
拉普拉斯平滑(Laplace Smoothing)又称 加1平滑,常用平滑方法。解决零概率问题。 背景:为什么要做平滑处理? 零概率问题:在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0。 在文本分类的问题中,当一个词语没有在训练样本中出 ...
概念 零概率问题:在计算事件的概率时,如果某个事件在观察样本库(训练集)中没有出现过,会导致该事件的概率结果是 $0$ 。这是不合理的,不能因为一个事件没有观察到,就被认为该事件一定不可能发生(即该事件的概率为 $0$ )。 拉普拉斯平滑(Laplacian ...
就武断的认为该事件的概率是0。 拉普拉斯的理论支撑 为了解决零概率的问题,法国数学家拉普拉斯最早提 ...
其实就是计算概率的时候,对于分子+1,避免出现概率为0。这样乘起来的时候,不至于因为某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0。在文本分类的问题中,当一个词语没有在训练 ...
朴素贝叶斯分类是一种生成式分类 p(y|x) = p(y,x) / p(x) =p(x|y) * p(y) | p(x) 在训练的时候假设x的所有特征是相互独立的,所以p(x|y) = 所有p(xi | y) 的乘积 只要通过贝叶斯展开+有xi独立 就能得到 这个模型里的参数就是,给定y ...
拉普拉斯变换 由于古典意义下的傅里叶变换存在的条件是\(f(t)\)除了满足狄拉克雷条件以外,还要在\((-\infty,\infty)\)上绝对可积,许多函数都不满足这个条件。在很多实际问题中,存在许多以时间 \(t\) 为自变量的函数,这些函数根本不需要考虑\(t<0\)的情况 ...
拉普拉斯变换的引入 首先能做的,是对周期函数做傅里叶级数展开,使用复数表达为: 至于为什么能展开成傅里叶级数,工数(高数)并没有说清楚,只给出了一个没有证明的迪利克雷条件,说只要满足该条件就一定能展开。 \[f(t) =\sum\limits_ ...
: 0 -1 0 -1 4 -1 0 -1 0 代码如下: 主要注意以下几点:1.拉普拉斯微分处理后,有些点像素值为负值,所 ...