原文:无迹卡尔曼滤波-2

对于上一篇中的问题:X N , , Y sin X 要求随机变量Y的期望和方差。还有一种思路是对X进行采样,比如取 个采样点 这些采样点可以称为sigma点 ,然后求取这些采样点的期望和方差。当采样值足够大时,结果与理论值接近。这种思路的问题显而易见,当随机变量维数增大时采样点的数量会急剧增加,比如一维需要 个采样点,二维就需要 , 个采样点,三维情况下需要 , , 个采样点,显然这样会造成严重的 ...

2016-03-02 19:16 0 7105 推荐指数:

查看详情

卡尔曼滤波(Unscented Kalman Filter)

卡尔曼滤波不同于扩展卡尔曼滤波,它是概率密度分布的近似,由于没有将高阶项忽略,所以在求解非线性时精度较高。 UT变换的核心思想:近似一种概率分布比近似任意一个非线性函数或非线性变换要容易。 原理: 假设n维随机向量x:N(x均值,Px),x通过非线性函数y=f(x)变换后得到n维 ...

Thu Sep 05 06:20:00 CST 2019 0 3332
卡尔曼滤波器详解

@ 目录 一、 非线性处理/测量模型 二、无损()变换(Unscented Transformation) 2.1 一个高斯分布产生sigma point 2.2 sigma point的权重 2.3 预测新的状态分布(predict过程 ...

Sun Dec 06 06:45:00 CST 2020 0 1089
【概率机器人】3.1 卡尔曼滤波、扩展卡尔曼滤波卡尔曼滤波

这一章将介绍卡尔曼滤波、扩展卡尔曼滤波以及卡尔曼滤波,并从贝叶斯滤波的角度来进行分析并完成数学推导。如果您对贝叶斯滤波不了解,可以查阅相关书籍或阅读 【概率机器人 2 递归状态估计】。 这三种滤波方式都假设状态变量 $\mathbf{x}_t$ 的置信度 $\mathrm{bel ...

Tue Mar 27 03:36:00 CST 2018 0 1845
卡尔曼滤波

卡尔曼滤波卡尔曼滤波算法是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法,是一种最优化自回归数据处理算法。 通俗地讲,对系统 \(k-1\) 时刻的状态,我们有两种途径来获得系统 \(k\) 时刻的状态。一种是根据常识或者系统以往的状态表现来预测 \(k ...

Mon Jun 14 05:09:00 CST 2021 0 956
卡尔曼滤波的推导

卡尔曼滤波的推导 1 最小二乘法 在一个线性系统中,若\(x\)为常量,是我们要估计的量,关于\(x\)的观测方程如下: \[y = Hx + v \tag{1.1} \] \(H\)是观测矩阵(或者说算符),\(v\)是噪音,\(y\)是观察量 ...

Mon Sep 11 07:34:00 CST 2017 0 4244
卡尔曼滤波学习

  在我总结Kalman filtering之前请允许我发泄一下,网上的各版本的卡尔曼滤波方程的变量字母真是多,而范例却全都是同一个测量气温的简单例子,单纯看书的话公式自己又推不出来,真是日了狗了。   好了,说到卡尔曼滤波,我对卡尔曼滤波的初步理解就是(反正这句话也是抄的,看看就好 ...

Sun Mar 26 05:28:00 CST 2017 8 14676
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM