...
火车上看的一篇文章。写得真是简单易懂。 选自 数论妙趣 数学女王的盛情款待 第六章 开门咒 费马小定理有多种证法,以同余证法最为简短而精致。 任意取一个质数,比如 。考虑从 到 的一系列整数 , , , , , , , , , , , ,给这些数都乘上一个与 互质的数,比如 ,得到 , , , , , , , , , , , 。对于模 来说,这些数同余于 , , , , , , , , , , ...
2016-02-28 18:01 0 6746 推荐指数:
...
数论: 1.费马小定理: ...
这篇博客就是讲证费马的,没什么意思。 既然是要用群论证明费马小定理,那么我们先用数论证明一下。 (以下的 p 为一个质数) 首先我们考虑 一个前置定理: 第一个证明 若 $(c,p) =1$ (即 c 与 p 的 gcd 为 1),且 $ac ≡ bc ...
费马小定理 设m为素数,a为任意整数,且$(a, m)=1$,则$a^{m-1} \equiv 1(mod \ m)$. 证明: 构造一个群$G<{[1],[2], \cdots, [m-1]}, \equiv *>$,下证这是一个群. 封闭性:对任意[i]、[j],假如不 ...
欧拉定理: 若正整数 a , n 互质,则 aφ(n)≡1(mod n) 其中 φ(n) 是欧拉函数(1~n) 与 n 互质的数。 证明如下: 不妨设X1,X2 ...... Xφn是1~n与n互质的数。 首先我们先来考虑一些数:aX1,aX2 ...
二、费马小定理 费马小定理是数论中的一个定理:假如a是一个整数,p是一个质数,那么 是p的倍数(即(a p-a)%p==0 --> a p%p=a%p),可以表示 ...
什么是费马小定理 费马小定理是数论中的一个重要定理,在 1636 年提出。如果 \(p\) 是一个质数,而整数 \(a\) 不是 \(p\) 的倍数,则有 \(a^ {p-1}≡1(mod\) \(p)\)。 费马小定理求逆元 ...
费马小定理 定义 对于质数 \(p\),当 \(a\) 是一个与 \(p\) 互质的整数时有: \[a^{p-1}\equiv 1\quad (mod\; p) \] 当然也可以化成: \[a^p\equiv a\quad (mod\; p) \] 证明 数学归纳 ...