费马小定理


什么是费马小定理

费马小定理是数论中的一个重要定理,在 1636 年提出。如果 \(p\) 是一个质数,而整数 \(a\) 不是 \(p\) 的倍数,则有 \(a^ {p-1}≡1(mod\) \(p)\)

费马小定理求逆元

#include<iostream>
#define ll long long
using namespace std;
ll quickpow(ll a, ll b, ll p){
    ll temp = 1;
    while(b){
        if(b & 1) temp = (temp * a) % p;
        a = (a * a) % p;
        b >>= 1;
    }
    return temp;
}
int main()
{
	ll a, p;
	cin>>a>>p;
	cout<<quickpow(a, p-2, p)<<endl;
	return 0;
}


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM