代码下载:基于PCA(主成分分析)的人脸识别 人脸识别是一个有监督学习过程,首先利用训练集构造一个人脸模型,然后将测试集与训练集进行匹配,找到与之对应的训练集头像。最容易的方式是直接利用欧式距离计算测试集的每一幅图像与训练集的每一幅图像的距离,然后选择距离最近的图像作为识别的结果。这种直接计算 ...
转自:http: www.cnblogs.com liu jun archive .html 以前对PCA算法有过一段时间的研究,但没整理成文章,最近项目又打算用到PCA算法,故趁热打铁整理下PCA算法的知识。本文观点旨在抛砖引玉,不是权威,更不能尽信,只是本人的一点体会。 主成分分析 PCA 是多元统计分析中用来分析数据的一种方法,它是用一种较少数 量的特征对样本进行描述以达到降低特征空间维数的 ...
2014-10-17 17:24 0 13153 推荐指数:
代码下载:基于PCA(主成分分析)的人脸识别 人脸识别是一个有监督学习过程,首先利用训练集构造一个人脸模型,然后将测试集与训练集进行匹配,找到与之对应的训练集头像。最容易的方式是直接利用欧式距离计算测试集的每一幅图像与训练集的每一幅图像的距离,然后选择距离最近的图像作为识别的结果。这种直接计算 ...
程序中采用的数据集是ORL人脸库,该人脸库共有400副人脸图像,40人,每人10幅,大小为112*92像素,同一个人的表情,姿势有少许变化。 程序的流程主要分为三部分,数据的预处理(PCA降维和规格化),数据的训练阶段,数据的识别阶段 数据的预处理的流程图 ...
opencv基于PCA降维算法的人脸识别(att_faces) 一、数据提取与处理 二、PCA降低维度 PCA变换原理。在人脸识别过程中,一般把图片看成是向量进行处理,高等数学中我们接触的一般都是二维或三维向量,向量的维数是根据组成向量的变量 ...
一、PCA原理 PCA的原理就是将原来的样本数据投影到一个新的空间中,相当于我们在矩阵分析里面学习的将一组矩阵映射到另外的坐标系下。通过一个转换坐标,也可以理解成把一组坐标转换到另外一组坐标系下,但是在新的坐标系下,表示原来的原本不需要那么多的变量,只需要原来样本的最大的一个线性 ...
本科期间做的一个课程设计,觉得比较好玩,现将之记录下来,实验所用图库及源程序。 1、实验目的 (1)学习主成分分析(PCA)的基础知识; (2)了解PCA在人脸识别与重建方面的应用; (3)认识数据降维操作在数据处理中的重要作用; (4)学习使用MATLAB软件实现PCA算法,进行人脸 ...
人脸数据来自http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html 实现代码和效果如下。由于图片数量有限(40*10),将原有图片顺序打乱进行检测。 可见马氏距离效果最佳。 [以下公式和文字来自John ...
...
...