Naive Bayes-朴素贝叶斯 Bayes’ theorem(贝叶斯法则) 在概率论和统计学中,Bayes’ theorem(贝叶斯法则)根据事件的先验知识描述事件的概率。贝叶斯法则表达式如下所示 P(A|B) – 在事件B下事件A发生的条件概率 P(B|A) – 在事件A下事件B发生 ...
什么是分类 分类是一种重要的数据分析形式,它提取刻画重要数据类的模型。这种模型称为分类器,预测分类的 离散的,无序的 类标号。例如医生对病人进行诊断是一个典型的分类过程,医生不是一眼就看出病人得了哪种病,而是要根据病人的症状和化验单结果诊断病人得了哪种病,采用哪种治疗方案。再比如,零售业中的销售经理需要分析客户数据,以便帮助他猜测具有某些特征的客户会购买某种商品。 如何进行分类 数据分类是一个两 ...
2014-10-16 15:46 0 13178 推荐指数:
Naive Bayes-朴素贝叶斯 Bayes’ theorem(贝叶斯法则) 在概率论和统计学中,Bayes’ theorem(贝叶斯法则)根据事件的先验知识描述事件的概率。贝叶斯法则表达式如下所示 P(A|B) – 在事件B下事件A发生的条件概率 P(B|A) – 在事件A下事件B发生 ...
朴素贝叶斯算法 【转载时请注明来源】:http://www.cnblogs.com/runner-ljt/ Ljt 勿忘初心 无畏未来 作为一个初学者,水平有限,欢迎交流指正。 朴素贝叶斯分类法是一种生成学习算法。 假设:在y给定的条件下,各特征Xi 之间 ...
一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X ...
贝叶斯定理是关于随机事件A和B的条件概率的一则定理(比如常见的:P(A|B)是在B发生的情况下A发生的可能性)。 朴素的含义是各特征相互独立,且同等重要。某些 分类算法均以贝叶斯定理为基础。由此产生了 朴素贝叶斯分类算法。 朴素贝叶斯分类算法的思想基础是:对于给出 ...
朴素贝叶斯(Naive Bayesian)是基于贝叶斯定理和特征条件独立假设的一种分类算法。朴素贝叶斯想必是很多人在刚学习机器学习时想去第一个学习的算法,因为它朴素呀、简单呀(我记得当时的想法就是这样)。它真的那么简单么?今天我们就来讨论一下这个“简单”的机器学习算法。 贝叶斯定理 ...
1.理解分类与监督学习、聚类与无监督学习。 简述分类与聚类的联系与区别。 (1)分类:给数据贴标签,通过分析已有的数据特征,对数据分成几类,已知分类结果。然后引入新数据对其归类。分类可以提高认知效率,较低认知成本。 (2)聚类:不知分类结果,通过数据一定的相似性,把那些相似的数据聚集在一起 ...
朴素贝叶斯假设各属性间相互独立,直接从已有样本中计算各种概率,以贝叶斯方程推导出预测样本的分类。 为了处理预测时样本的(类别,属性值)对未在训练样本出现,从而导致概率为0的情况,使用拉普拉斯修正(假设属性值与类别均匀分布)。 代码及注释如下: 一、离散值 1,朴素贝叶斯算法计算相关参数 ...
先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,c ...