作者(Alex Rodriguez, Alessandro Laio)提出了一种很简洁优美的聚类算法, 可以识别各种形状的类簇, 并且其超参数很容易确定. 算法思想 该算法的假设是类簇的中心由一些局部密度比较低的点围绕, 并且这些点距离其他有高局部密度的点的距离都比较大. 首先定义两个值 ...
本博客已经迁往http: www.kemaswill.com , 博客园这边也会继续更新, 欢迎关注 作者 Alex Rodriguez, Alessandro Laio 提出了一种很简洁优美的聚类算法, 可以识别各种形状的类簇, 并且其超参数很容易确定. 算法思想 该算法的假设是, 类簇的中心由一些局部密度比较低的点围绕, 并且这些点距离其他高局部密度的点的距离都比较大. 首先定义两个值: 局部 ...
2014-06-28 21:59 8 7007 推荐指数:
作者(Alex Rodriguez, Alessandro Laio)提出了一种很简洁优美的聚类算法, 可以识别各种形状的类簇, 并且其超参数很容易确定. 算法思想 该算法的假设是类簇的中心由一些局部密度比较低的点围绕, 并且这些点距离其他有高局部密度的点的距离都比较大. 首先定义两个值 ...
最后,附上作者在补充材料里提供的 Matlab 示例程序 (加了适当的代码注释)。 clear all close all disp('The only input ...
博客上看到的,叫做层次聚类,但是《医学统计学》上叫系统聚类(chapter21) 思想很简单,想象成一颗倒立的树,叶节点为样本本身,根据样本之间的距离(相似系数),将最近的两样本合并到一个根节点,计算新的根节点与其他样本的距离(类间相似系数),距离最小的合为新的根节点。以此类推 对于样本X ...
聚类算法有很多,常见的有几大类:划分聚类、层次聚类、基于密度的聚类。本篇内容包括k-means、层次聚类、DBSCAN 等聚类方法。 k-means 方法 初始k个聚类中心; 计算每个数据点到聚类中心的距离,重新分配每个数据点所属聚类; 计算新的聚簇集合的平均值作为新 ...
一、聚类算法简介 聚类是无监督学习的典型算法,不需要标记结果。试图探索和发现一定的模式,用于发现共同的群体,按照内在相似性将数据划分为多个类别使得内内相似性大,内间相似性小。有时候作为监督学习中稀疏特征的预处理(类似于降维,变成K类后,假设有6类,则每一行都可以表示为类似于000100 ...
超体聚类是一种图像的分割方法。 超体(supervoxel)是一种集合,集合的元素是“体”。与体素滤波器中的体类似,其本质是一个个的小方块。与大部分的分割手段不同,超体聚 类的目的并不是分割出某种特定物体,超体是对点云实施过分割(over segmentation),将场景点云化成很多小块 ...
Infi-chu: http://www.cnblogs.com/Infi-chu/ 一、简介 1.聚类算法的应用领域 用户画像,广告推荐,Data Segmentation,搜索引擎的流量推荐,恶意流量识别 基于位置信息的商业推送,新闻聚类,筛选排序 图像分割,降维,识别 ...
聚类算法 李鑫 2014210820 电子系 1、kmeans算法 1.1Kmeans算法理论基础 K均值算法能够使聚类域中所有样品到聚类中心距离平方和最小。其原理为:先取k个初始聚类中心,计算每个样品到这k个中心的距离,找出最小距离,把样品归入最近的聚类中心,修改中心点 ...