FleuryFleury算法用于解决欧拉回路的具体输出路径问题,在算法开始之前,我们先用一个dfsdfs来判断这个图是否是一个联通块,然后再判断这个图中有奇数出度的点是否只有00个或者22个,如果是00个,则存在欧拉回路,如果是两个,则存在欧拉路径,对于欧拉回路,我们任意选择一个点作为dfsdfs ...
欧拉回路:简单来说,就是经过图G的每条边一次且仅一次,回到出发点的路径就叫欧拉回路 我就直接上模板了。。。。 View Code ...
2013-03-16 11:46 0 3271 推荐指数:
FleuryFleury算法用于解决欧拉回路的具体输出路径问题,在算法开始之前,我们先用一个dfsdfs来判断这个图是否是一个联通块,然后再判断这个图中有奇数出度的点是否只有00个或者22个,如果是00个,则存在欧拉回路,如果是两个,则存在欧拉路径,对于欧拉回路,我们任意选择一个点作为dfsdfs ...
上面是摘自图论书上的定义。 算法在运行过程中删除了所有已走的路径,也就是说途中残留了所有没有行走的边。根据割边的定义,如果在搜索过程中遇到割边意味着当前的搜索路径需要改进,即提前输出某一个联通子集的访问序列,这样就能够保证访问完其中联通子图中后再通过割边访问后一个联通子图,最后再沿原路输出 ...
一.欧拉回路的判定 主要分为两大类 无向图欧拉回路判定: 1、欧拉路径:即可以一笔画,充要条件是度数为奇数的点的个数为0或2。 2、欧拉回路:欧拉路径构成一个圈,充要条件是全部是偶点 有向图欧拉回路判定 1、欧拉路径:起点出度比入度大1,终点入度比出度大1,其他点全部是偶点 ...
概念: 欧拉回路: 一笔画, 起点等于终点. 欧拉路径: 一笔画, 起点可以不等于终点.(条件更加宽松). 欧拉图: 存在欧拉回路的图. 半欧拉图: 仅存在欧拉路径的图. 找欧拉回路 存在的充要条件 A.判断欧拉通路是否存在的方法 ...
须知: 图中的度:所谓顶点的度(degree),就是指和该顶点相关联的边数。 在 有向图中,度又分为入度和出度。 入度 (in-degree) :以某顶点为弧头,终止于该 ...
基本概念及定理1. 欧拉通路、欧拉回路、欧拉图无向图:1) 设G是连通无向图,则称经过G的每条边一次并且仅一次的路径为欧拉通路;2) 如果欧拉通路是回路(起点和终点是同一个顶点),则称此回路为欧拉回路(Euler circuit);3) 具有欧拉回路的无向图G称为欧拉图(Euler graph ...
欧拉回路:图G,若存在一条路,经过G中每条边有且仅有一次,称这条路为欧拉路,如果存在一条回路经过G每条边有且仅有一次, 称这条回路为欧拉回路。具有欧拉回路的图成为欧拉图。 判断欧拉路是否存在的方法 有向图:图连通,有一个顶点出度大入度1,有一个顶点入度大出度1,其余都是出度=入度。 无向图 ...
在欧拉中经常会用到联通块 而这里的联通块并不是用tarjan来求 而是用并查集 find(i) 就能找到i所在的联通块的编号 遍历每一个点 如果是j联通块的就进行处理 既能实现对某个联通块里点的处理 遍历每个点的find(i)放到set里 那set.size() 就是联通块的个数 ...