本篇是该系列的第五篇,承接上篇huffman解码,介绍接下来的两个步骤——反量化和逆zigzag变换,即IDCT前的两个步骤。 需要说明的是,这两个步骤可以颠倒,本人的实现是,先反量化,再逆ZigZag变换。 其实,这两步不需要太多说明,无非是查表对数据进行scale和数据重排 ...
DCT Discrete Cosine Transform 离散余弦变换是一种经典谱分析方法,属于离散傅立叶变换的一种特殊情况,即在变换后的傅立叶级数中只包括余弦项,变化后的数据比较集中。经过DCT变换可以将图片从色彩域转换到频率域,将原始图像的信息块转化为代表不同频率分量的系数集。它是一种广泛使用的压缩方法,首先把每个单独的彩色图像分量分成 图像块,然后经过二维DCT变换,其低频分量都集中在左上 ...
2012-03-22 03:36 4 5851 推荐指数:
本篇是该系列的第五篇,承接上篇huffman解码,介绍接下来的两个步骤——反量化和逆zigzag变换,即IDCT前的两个步骤。 需要说明的是,这两个步骤可以颠倒,本人的实现是,先反量化,再逆ZigZag变换。 其实,这两步不需要太多说明,无非是查表对数据进行scale和数据重排 ...
DCT变换、DCT反变换、分块DCT变换 欢迎转载,但请注明出处! 一、引言 DCT变换的全称是离散余弦变换(Discrete Cosine Transform),主要用于将数据或图像的压缩,能够将空域的信号转换到频域上,具有良好的去相关性的性能。DCT变换本身是无损 ...
,同时,由于DCT变换时对称的,所以,我们可以在量化编码后利用DCT反变换,在接收端恢复原始的图像信息。DCT变换在 ...
DCT变换可谓是JPEG编码原理里面数学难度最高的一环,我也是因为DCT变换的算法才对JPEG编码感兴趣(真是不自量力)。这一章我就把我对DCT的研究心得体会分享出来,希望各位大神也不吝赐教。 1.离散余弦变换(DCT)介绍 如果想深入了解这一章,就需要从傅里叶变换开始。学过《信号与系统 ...
http://blog.csdn.net/newchenxf/article/details/51719597 1 前言 JPEG是joint Photographic Experts Group(联合图像专家组)的缩写,文件后辍名为”.jpg”或”.jpeg”。 jpg图片可以说是最常 ...
本篇是该系列的第六篇,承接上篇IZigZag变换,介绍接下来的一个步骤——逆离散余弦变换,即逆零偏置前的一个步骤。 该步骤比较偏理论,其业务是对IZigZag变换后的数据,再进一步的处理,使其恢复DCT变换前的数据。 需要补充一点说明的是,上面的DCT其实是DCT2,因为jpeg ...
DCT变换的基本思路是将图像分解为8×8的子块或16×16的子块,并对每一个子块进行单独的DCT变换,然后对变换结果进行量化、编码。随着子块尺寸的增加,算法的复杂度急剧上升,因此,实用中通常采用8×8的子块进行变换,但采用较大的子块可以明显减少图像分块效应。 在图像压缩中,一般把图像分解为 ...
对图像处理经常用到DCT, Python下有很多带有DCT算法包, 这里使用OpenCV的DCT做变换, 并简单置0部分数据, 再查看反变换图像的效果. import numpy as np import cv2 # from matplotlib import pyplot as plt y ...