一次性拉取多条数据,消费后再手动提交ACK,因为要保存到数据库去, 这过程如果失败的话, 需要重新消费这些数据
所以 配置的时候,KAFKA不能自动提交 ,
批量消费数据
1.设置ENABLE_AUTO_COMMIT_CONFIG=false,禁止自动提交
2.设置AckMode=MANUAL_IMMEDIATE
3.监听方法加入Acknowledgment ack 参数
package com.zenlayer.ad.kafuka; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.common.serialization.StringDeserializer; import org.apache.kafka.common.serialization.StringSerializer; import org.springframework.beans.factory.annotation.Value; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.kafka.annotation.EnableKafka; import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory; import org.springframework.kafka.config.KafkaListenerContainerFactory; import org.springframework.kafka.core.DefaultKafkaConsumerFactory; import org.springframework.kafka.core.DefaultKafkaProducerFactory; import org.springframework.kafka.core.KafkaTemplate; import org.springframework.kafka.core.ProducerFactory; import org.springframework.kafka.listener.AbstractMessageListenerContainer; import java.util.HashMap; import java.util.Map; @Configuration @EnableKafka public class KafkaConfiguration { /** * @author zhff * @version 2019/9/1 下午04:07 */ @Value("${spring.kafka.bootstrap-servers}") private String bootstrapServers; @Value("${spring.kafka.consumer.enable-auto-commit}") private Boolean autoCommit; @Value("${spring.kafka.consumer.auto-commit-interval}") private Integer autoCommitInterval; @Value("${spring.kafka.consumer.group-id}") private String groupId; @Value("${spring.kafka.consumer.max-poll-records}") private Integer maxPollRecords; @Value("${spring.kafka.consumer.auto-offset-reset}") private String autoOffsetReset; @Value("${spring.kafka.producer.retries}") private Integer retries; @Value("${spring.kafka.producer.batch-size}") private Integer batchSize; @Value("${spring.kafka.producer.buffer-memory}") private Integer bufferMemory; /** * 生产者配置信息 */ @Bean public Map<String, Object> producerConfigs() { Map<String, Object> props = new HashMap<String, Object>(); props.put(ProducerConfig.ACKS_CONFIG, "0");//默认为1,all和-1都是消费在服务副本里 也已经接收成功,防止数据丢失 props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers); props.put(ProducerConfig.RETRIES_CONFIG, retries); props.put(ProducerConfig.BATCH_SIZE_CONFIG, batchSize); props.put(ProducerConfig.LINGER_MS_CONFIG, 1); props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, bufferMemory); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class); return props; } /** * 生产者工厂 */ @Bean public ProducerFactory<String, String> producerFactory() { return new DefaultKafkaProducerFactory<>(producerConfigs()); } /** * 生产者模板 */ @Bean public KafkaTemplate<String, String> kafkaTemplate() { return new KafkaTemplate<>(producerFactory()); } /** * 消费者配置信息 */ @Bean public Map<String, Object> consumerConfigs() { Map<String, Object> props = new HashMap<String, Object>(); props.put(ConsumerConfig.GROUP_ID_CONFIG, groupId); props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers); props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, maxPollRecords); props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, maxPollRecords); props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, autoCommit);// 手动提交 配置 false props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 120000); props.put(ConsumerConfig.REQUEST_TIMEOUT_MS_CONFIG, 180000); props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); return props; } /** * 消费者批量工程 */ @Bean public KafkaListenerContainerFactory<?> batchFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(new DefaultKafkaConsumerFactory<>(consumerConfigs())); // 设置为批量消费,每个批次数量在Kafka配置参数中设置ConsumerConfig.MAX_POLL_RECORDS_CONFIG factory.setBatchListener(true); factory.setConcurrency(4); factory.getContainerProperties().setAckMode(AbstractMessageListenerContainer.AckMode.MANUAL_IMMEDIATE); factory.getContainerProperties().setPollTimeout(30000); return factory; } }
配置文件 也可以把手动提交配置 写成这样
ack-mode: MANUAL_IMMEDIATE
spring: kafka: bootstrap-servers: 192.168.1.125:9092 192.168.1.126:9092 192.168.1.127:9092 producer: # 重试次数 retries: 3 # 批量发送的消息数量 batch-size: 16384 # 32MB的批处理缓冲区 buffer-memory: 33554432 key-serializer: org.apache.kafka.common.serialization.StringSerializer value-serializer: org.apache.kafka.common.serialization.StringSerializer consumer: # 默认消费者组 group-id: 0 # 最早未被消费的offset auto-offset-reset: earliest # 批量一次最大拉取数据量 max-poll-records: 3000 # 自动提交时间间隔, 这种直接拉到数据就提交 容易丢数据 auto-commit-interval: 2000 # 禁止自动提交 enable-auto-commit: false # 批量拉取间隔,要大于批量拉取数据的处理时间,时间间隔太小会有重复消费 max.poll.interval.ms: 5000 topicName: topic2: topic_collect1 topic5: topic_collect111
消费的方法如下, 方法比较简单
@KafkaListener(id = "0", topics = "topic_collect", containerFactory = "batchFactory") public void listen100(List<ConsumerRecord<String, String>> records, Acknowledgment ack) { System.out.println(records.size() + "条数被消费"); try { batchConsumer(records); ack.acknowledge(); } catch (Exception ex) { logger.error("消费数据出错 ", ex.getStackTrace()); } }