曼哈顿距离是由十九世纪的赫尔曼·闵可夫斯基所创词汇 ,是种使用在几何度量空间的几何学用语,用以标明两个点在标准坐标系上的绝对轴距总和。
上图中红线代表曼哈顿距离,绿色代表欧氏距离,也就是直线距离,而蓝色和橙色代表等价的曼哈顿距离。通俗来讲,想象你在曼哈顿要从一个十字路口开车到另外一个十字路口实际驾驶距离就是这个“曼哈顿距离”,此即曼哈顿距离名称的来源,同时,曼哈顿距离也称为城市街区距离(City Block distance)。正正方方的曼哈顿的地图:
曼哈顿距离公式:
3. 切比雪夫距离(Chebyshev distance)
数学上,切比雪夫距离是将2个点之间的距离定义为其各坐标数值差的最大值。

网上搜索,好多有关这个距离的解释,大多都是采用国际象棋中的王的走步来作为例子,王可以前后左右走,还可以斜前斜后走,一共8个方向可以认为距离均等。
也就是在下面3×3邻域内,中心网格的中心点到8个邻域网格中心点的距离相等。


1. 欧式距离(Euclidean Distance)
欧式距离是我们在直角坐标系中最常用的距离量算方法,例如小时候学的“两点之间的最短距离是连接两点的直线距离。”这就是典型的欧式距离量算方法。
通常这这个距离的获取是基于我们熟悉的“勾股定理”,解算三角形斜边得到的。


