random.seed(a=None, version=2)
初始化随机数生成器。
如果 a 被省略或为 None ,则使用当前系统时间。 如果操作系统提供随机源,则使用它们而不是系统时间(有关可用性的详细信息,请参阅 os.urandom() 函数)。
如果 a 是 int 类型,则直接使用。
对于版本2(默认的),str 、 bytes 或 bytearray 对象转换为 int 并使用它的所有位。
对于版本1(用于从旧版本的Python再现随机序列),用于 str 和 bytes 的算法生成更窄的种子范围。
在 3.2 版更改: 已移至版本2方案,该方案使用字符串种子中的所有位。
random.getstate()
返回捕获生成器当前内部状态的对象。 这个对象可以传递给 setstate() 来恢复状态。
random.setstate(state)
state 应该是从之前调用 getstate() 获得的,并且 setstate() 将生成器的内部状态恢复到 getstate() 被调用时的状态。
random.getrandbits(k)
返回带有 k 位随机的Python整数。 此方法随 MersenneTwister 生成器一起提供,其他一些生成器也可以将其作为API的可选部分提供。 如果可用,getrandbits() 启用 randrange() 来处理任意大范围。
整数用函数
random.randrange(stop)
random.randrange(start, stop[, step])
从 range(start, stop, step) 返回一个随机选择的元素。 这相当于 choice(range(start, stop, step)) ,但实际上并没有构建一个 range 对象。
位置参数模式匹配 range() 。不应使用关键字参数,因为该函数可能以意外的方式使用它们。
在 3.2 版更改: randrange() 在生成均匀分布的值方面更为复杂。 以前它使用了像``int(random()*n)``这样的形式,它可以产生稍微不均匀的分布。
random.randint(a, b)
返回随机整数 N 满足 a <=N <=b。相当于 randrange(a, b+1)。
序列用函数
random.choice(seq)
从非空序列 seq 返回一个随机元素。 如果 seq 为空,则引发 IndexError。
random.choices(population, weights=None, *, cum_weights=None, k=1)
从*population*中选择替换,返回大小为 k 的元素列表。 如果 population 为空,则引发 IndexError。
如果指定了 weight 序列,则根据相对权重进行选择。 或者,如果给出 cum_weights 序列,则根据累积权重(可能使用 itertools.accumulate() 计算)进行选择。 例如,相对权重``[10, 5, 30, 5]``相当于累积权重``[10, 15, 45, 50]``。 在内部,相对权重在进行选择之前会转换为累积权重,因此提供累积权重可以节省工作量。
如果既未指定 weight 也未指定 cum_weights ,则以相等的概率进行选择。 如果提供了权重序列,则它必须与 population 序列的长度相同。 一个 TypeError 指定了 weights 和*cum_weights*。
weights 或 cum_weights 可以使用任何与 random() 返回的 float 值互操作的数值类型(包括整数,浮点数和分数但不包括十进制小数)。
对于给定的种子,具有相等加权的 choices() 函数通常产生与重复调用 choice() 不同的序列。 choices() 使用的算法使用浮点运算来实现内部一致性和速度。 choice() 使用的算法默认为重复选择的整数运算,以避免因舍入误差引起的小偏差。
3.6 新版功能.
random.shuffle(x[, random])
将序列 x 随机打乱位置。
可选参数 random 是一个0参数函数,在 [0.0, 1.0) 中返回随机浮点数;默认情况下,这是函数 random() 。
要改变一个不可变的序列并返回一个新的打乱列表,请使用``sample(x, k=len(x))``。
请注意,即使对于小的 len(x),x 的排列总数也可以快速增长,大于大多数随机数生成器的周期。 这意味着长序列的大多数排列永远不会产生。 例如,长度为2080的序列是可以在 Mersenne Twister 随机数生成器的周期内拟合的最大序列。
random.sample(population, k)
返回从总体序列或集合中选择的唯一元素的 k 长度列表。 用于无重复的随机抽样。
返回包含来自总体的元素的新列表,同时保持原始总体不变。 结果列表按选择顺序排列,因此所有子切片也将是有效的随机样本。 这允许抽奖获奖者(样本)被划分为大奖和第二名获胜者(子切片)。
总体成员不必是 hashable 或 unique 。 如果总体包含重复,则每次出现都是样本中可能的选择。
要从一系列整数中选择样本,请使用 range() 对象作为参数。 对于从大量人群中采样,这种方法特别快速且节省空间:sample(range(10000000), k=60) 。
如果样本大小大于总体大小,则引发 ValueError 。
实值分布
以下函数生成特定的实值分布。如常用数学实践中所使用的那样, 函数参数以分布方程中的相应变量命名;大多数这些方程都可以在任何统计学教材中找到。
random.random()
返回 [0.0, 1.0) 范围内的下一个随机浮点数。
random.uniform(a, b)
返回一个随机浮点数 N ,当 a <=b 时 a <=N <=b ,当 b < a 时 b <=N <=a 。
取决于等式 a + (b-a) * random() 中的浮点舍入,终点 b 可以包括或不包括在该范围内。
random.triangular(low, high, mode)
返回一个随机浮点数 N ,使得 low <=N <=high 并在这些边界之间使用指定的 mode 。 low 和 high 边界默认为零和一。 mode 参数默认为边界之间的中点,给出对称分布。
random.betavariate(alpha, beta)
Beta 分布。 参数的条件是 alpha > 0 和 beta > 0。 返回值的范围介于 0 和 1 之间。
random.expovariate(lambd)
指数分布。 lambd 是 1.0 除以所需的平均值,它应该是非零的。 (该参数本应命名为 “lambda” ,但这是 Python 中的保留字。)如果 lambd 为正,则返回值的范围为 0 到正无穷大;如果 lambd 为负,则返回值从负无穷大到 0。
random.gammavariate(alpha, beta)
Gamma 分布。 ( 不是 gamma 函数! ) 参数的条件是 alpha > 0 和 beta > 0。
概率分布函数是:
x ** (alpha - 1) * math.exp(-x / beta)
pdf(x)=--------------------------------------
math.gamma(alpha) * beta ** alpha
random.gauss(mu, sigma)
高斯分布。 mu 是平均值,sigma 是标准差。 这比下面定义的 normalvariate() 函数略快。
random.lognormvariate(mu, sigma)
对数正态分布。 如果你采用这个分布的自然对数,你将得到一个正态分布,平均值为 mu 和标准差为 sigma。 mu 可以是任何值,sigma 必须大于零。
random.normalvariate(mu, sigma)
正态分布。 mu 是平均值,sigma 是标准差。
random.vonmisesvariate(mu, kappa)
mu 是平均角度,以弧度表示,介于0和 2*pi 之间,kappa 是浓度参数,必须大于或等于零。 如果 kappa 等于零,则该分布在0到 2*pi 的范围内减小到均匀的随机角度。
random.paretovariate(alpha)
帕累托分布。 alpha 是形状参数。
random.weibullvariate(alpha, beta)
威布尔分布。 alpha 是比例参数,beta 是形状参数。
替代生成器
class random.Random([seed])
。该类实现了 random 模块所用的默认伪随机数生成器。
class random.SystemRandom([seed])
使用 os.urandom() 函数的类,用从操作系统提供的源生成随机数。 这并非适用于所有系统。 也不依赖于软件状态,序列不可重现。 因此,seed() 方法没有效果而被忽略。 getstate() 和 setstate() 方法如果被调用则引发 NotImplementedError。
关于再现性的说明
有时能够重现伪随机数生成器给出的序列是有用的。 通过重新使用种子值,只要多个线程没有运行,相同的序列就可以在两次不同运行之间重现。
大多数随机模块的算法和种子函数都会在 Python 版本中发生变化,但保证两个方面不会改变:
如果添加了新的播种方法,则将提供向后兼容的播种机。当兼容的播种机被赋予相同的种子时,生成器的 random() 方法将继续产生相同的序列。
例子和配方
基本示例:
>>>
>>> random() # Random float: 0.0 <=x < 1.0
0.37444887175646646
>>> uniform(2.5, 10.0) # Random float: 2.5 <=x < 10.0
3.1800146073117523
>>> expovariate(1 / 5) # Interval between arrivals averaging 5 seconds
5.148957571865031
>>> randrange(10) # Integer from 0 to 9 inclusive
7
>>> randrange(0, 101, 2) # Even integer from 0 to 100 inclusive
26
>>> choice(['win', 'lose', 'draw']) # Single random element from a sequence
'draw'
>>> deck='ace two three four'.split()
>>> shuffle(deck) # Shuffle a list
>>> deck
['four', 'two', 'ace', 'three']
>>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement
[40, 10, 50, 30]
模拟:
>>>
>>> # Six roulette wheel spins (weighted sampling with replacement)
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
['red', 'green', 'black', 'black', 'red', 'black']
>>> # Deal 20 cards without replacement from a deck of 52 playing cards
>>> # and determine the proportion of cards with a ten-value
>>> # (a ten, jack, queen, or king).
>>> deck=collections.Counter(tens=16, low_cards=36)
>>> seen=sample(list(deck.elements()), k=20)
>>> seen.count('tens') / 20
0.15
>>> # Estimate the probability of getting 5 or more heads from 7 spins
>>> # of a biased coin that settles on heads 60% of the time.
>>> def trial():
... return choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >=5
...
>>> sum(trial() for i in range(10000)) / 10000
0.4169
>>> # Probability of the median of 5 samples being in middle two quartiles
>>> def trial():
... return 2500 <=sorted(choices(range(10000), k=5))[2] < 7500
...
>>> sum(trial() for i in range(10000)) / 10000
0.7958
statistical bootstrapping 使用重采样和替换来估计大小为五的样本的均值的置信区间的示例:
# statistics.about/od/Applications/a/Example-Of-Bootstrapping.htm
from statistics import mean
from random import choices
data=1, 2, 4, 4, 10
means=sorted(mean(choices(data, k=5)) for i in range(20))
print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
f'interval from {means[1]:.1f} to {means[-2]:.1f}')
使用 重新采样排列测试 来确定统计学显著性或者使用 p-值 来观察药物与安慰剂的作用之间差异的示例:
# Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
from statistics import mean
from random import shuffle
drug=[54, 73, 53, 70, 73, 68, 52, 65, 65]
placebo=[54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
observed_diff=mean(drug) - mean(placebo)
n=10000
count=0
combined=drug + placebo
for i in range(n):
shuffle(combined)
new_diff=mean(combined[:len(drug)]) - mean(combined[len(drug):])
count +=(new_diff >=observed_diff)
print(f'{n} label reshufflings produced only {count} instances with a difference')
print(f'at least as extreme as the observed difference of {observed_diff:.1f}.')
print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
print(f'hypothesis that there is no difference between the drug and the placebo.')
模拟单个服务器队列中的到达时间和服务交付:
from random import expovariate, gauss
from statistics import mean, median, stdev
average_arrival_interval=5.6
average_service_time=5.0
stdev_service_time=0.5
num_waiting=0
arrivals=[]
starts=[]
arrival=service_end=0.0
for i in range(20000):
if arrival <=service_end:
num_waiting +=1
arrival +=expovariate(1.0 / average_arrival_interval)
arrivals.append(arrival)
else:
num_waiting -=1
service_start=service_end if num_waiting else arrival
service_time=gauss(average_service_time, stdev_service_time)
service_end=service_start + service_time
starts.append(service_start)
waits=[start - arrival for arrival, start in zip(arrivals, starts)]
print(f'Mean wait: {mean(waits):.1f}. Stdev wait: {stdev(waits):.1f}.')
print(f'Median wait: {median(waits):.1f}. Max wait: {max(waits):.1f}.')