Tensor 和 NumPy 相互转换常使用 numpy() 和 from_numpy() 。需要注意的是: 这两个函数所产生的 Tensor 和 NumPy 中的数组共享相同的内存(所以他们之间的转换很快),改变其中一个时另一个也会改变!
Tensor 转 Numpy 数组
a = torch.ones(3) b = a.numpy() print(a) print(b) tensor([1., 1., 1.]) [1. 1. 1.] a += 1
print(a) print(b) a = a + 1
print(a) print(b) tensor([3., 3., 3.]) [3. 3. 3.] tensor([4., 4., 4.]) [3. 3. 3.] a = torch.ones(3) b = a.numpy() print(a) print(b) b += 1
print(a) print(b) b = b+1
print(a) print(b) tensor([1., 1., 1.]) [1. 1. 1.] tensor([2., 2., 2.]) [2. 2. 2.] tensor([2., 2., 2.]) [3. 3. 3.]
NumPy 数组转 Tensor
import numpy as np a = np.ones(3) b = torch.from_numpy(a) print(a, b) a += 1
print(a, b) b += 1
print(a, b) [1. 1. 1.] tensor([1., 1., 1.], dtype=torch.float64) [2. 2. 2.] tensor([2., 2., 2.], dtype=torch.float64) [3. 3. 3.] tensor([3., 3., 3.], dtype=torch.float64)
使用 torch.tensor() 将 NumPy 数组转换成 Tensor(不再共享内存)
c = torch.tensor(a) a += 1 print(a, c) [4. 4. 4.] tensor([3., 3., 3.], dtype=torch.float64)