[开发技巧]·TensorFlow中numpy与tensor数据相互转化


 

[开发技巧]·TensorFlow中numpy与tensor数据相互转化

个人主页–> https://xiaosongshine.github.io/

- 问题描述

在我们使用TensorFlow进行深度学习训练时,很多时候都是与Numpy数据打招呼,例如我们csv或者照片数据等。
但是我们都知道,TensorFlow训练时都是使用Tensor来存储变量的,并且网络输出的结果也是Tensor。

一般情况下我们不会感受到Numpy与Tensor之间的区别,因为TensorFlow网络在输入Numpy数据时会自动转换为Tensor来处理。
但是在输出网络时,输出的结果仍为Tensor,当我们要用这些结果去执行只能由Numpy数据来执行的操作时就会出现莫名其妙的错误。

例如,当我想要用自编码器与解码器输出的结果使用matplotlib显示时就会报错

TypeError: Image data cannot be converted to float

 

解决方法

有时候解决起来很简单,就是错误比较难找到,所以我推荐的方法为将数据进行显式的转化。

  • Numpy2Tensor

虽然TensorFlow网络在输入Numpy数据时会自动转换为Tensor来处理,但是我们自己也可以去显式的转换:

data_tensor= tf.convert_to_tensor(data_numpy) 

 

  • Tensor2Numpy

网络输出的结果仍为Tensor,当我们要用这些结果去执行只能由Numpy数据来执行的操作时就会出现莫名其妙的错误。解决方法:

with tf.Session() as sess: data_numpy = data_tensor.eval() 

 

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM