指数运算


前言

运算法则

  • 实数指数幂的运算性质如下:此时\(a>0\)\(b>0\)\(m,n\in R\)

公式:\(a^m\cdot a^n=a^{m+n}\)\((a^m)^n=(a^n)^m=a^{mn}\)\((a\cdot b)^n=a^n\cdot b^n\)\((\cfrac{a}{b})^n=\cfrac{a^n}{b^n}=a^n\cdot b^{-n}\)

  • 指数幂运算化简的一般原则

(1).有括号的先算括号里的,无括号的先做指数运算.

(2).先乘除后加减,负指数幂化成正指数幂的倒数.

(3).底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.

(4).若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.

(5).涉及化简问题,常将数字运算和字母运算分开进行。

典例剖析

计算 \(0.027^{-\frac{1}{3}}-(-\cfrac{1}{7})^{-2}+(2\cfrac{7}{9})^{\frac{1}{2}}-(\sqrt{2}-1)^0\)

解析:原式=\([(0.3)^3]^{-\frac{1}{3}}-[(\cfrac{1}{7})^{2}]^{-1}+[(\cfrac{5}{3})^2]^{\frac{1}{2}}-1\)

\(=\cfrac{10}{3}-49+\cfrac{5}{3}-1=-45\)

化简 \(\cfrac{\sqrt{\sqrt[3]{ab^{2} a^{3} b^{2}}}}{\sqrt[3]{b}\left(a^{\frac{1}{6}} b^{\frac{1}{2}}\right)^{4}}\) \((a, b\)为正数)的结果是__________.

解:原式=\(\cfrac{\left(\left(a b^{2}\right)^{\frac{1}{3}} \cdot a^{3} \cdot b^{2}\right)^{\frac{1}{2}}}{b^{\frac{1}{3}} \cdot a^{\frac{2}{3}} \cdot b^{2}}=a^{\frac{1}{6}+\frac{3}{2}-\frac{2}{3}} b^{\frac{1}{3}+1-\frac{1}{3}-2}=\cfrac{a}{b}\)

计算 \(1.5^{-\frac{1}{3}}\times\left(-\frac{7}{6}\right)^{0}+8^{\frac{1}{4}} \times \sqrt[4]{2}+(\sqrt[3]{2} \times \sqrt{3})^{6}-\sqrt{\left(-\frac{2}{3}\right)^{\frac{2}{3}}}\)

解析:原式=\(\left(\cfrac{3}{2}\right)^{-\frac{1}{3}}+2^{\frac{3}{4}} \times 2^{\frac{1}{4}}+2^{2} \times 3^{3}-\left(\cfrac{2}{3}\right)^{\frac{1}{3}}=\left(\cfrac{2}{3}\right)^{\frac{1}{3}}+2+4 \times 27-\left(\cfrac{2}{3}\right)^{\frac{1}{3}}=110\) .

计算 \((0.25)^{\frac{1}{2}}-\left[-2 \times\left(\frac{3}{7}\right)^{0}\right]^{2} \times\left[(-2)^{3}\right]^{\frac{4}{3}}+(\sqrt{2}-1)^{-1}-2^{\frac{1}{2}}\)

解析:原式=\(\cfrac{1}{2}-4 \times 16+\sqrt{2}+1-\sqrt{2}=\cfrac{1}{2}-64+1=\cfrac{1}{2}-63=-\cfrac{125}{2}\)

计算 \((\sqrt[3]{2} \times \sqrt{3})^{6}+(-2018)^{0}-4 \times\left(\cfrac{16}{49}\right)^{-\frac{1}{2}}+\sqrt[4]{(3-\pi)^{4}}\)

解析:原式=\(108+1-7+\pi-3=99+\pi\)

计算 \(\cfrac{a^{\frac{3}{2}}-1}{a+a^{\frac{1}{2}}+1}-\cfrac{a+a^{\frac{1}{2}}}{a^{\frac{1}{2}}+1}+\cfrac{a-1}{a^{\frac{1}{2}}-1}\)

解析:原式=\(\cfrac{\left(a^{\frac{1}{2}}-1\right) \cdot\left(a+a^{\frac{1}{2}}+1\right)}{a+a^{\frac{1}{2}}+1}-\cfrac{a^{\frac{3}{2}}-a+a-a^{\frac{1}{2}}-a^{\frac{3}{2}}+a^{\frac{1}{2}}-a+1}{a-1}\)

\(=a^{\frac{1}{2}}-1-\cfrac{1-a}{a-1}=a^{\frac{1}{2}}\)

化简 \(\frac{\left(a^{\frac{2}{3}} b^{-1}\right)^{-\frac{1}{2}} \cdot a^{-\frac{1}{2}} \cdot b^{\frac{1}{3}}}{\sqrt[6]{a \cdot b^{5}}}\) (\(a>0,b>0\))

解析:原式= \(\cfrac{a^{-\frac{1}{3}}b^{\frac{1}{2}}a^{-\frac{1}{2}}b^{\frac{1}{3}}}{a^{\frac{1}{6}}b^{\frac{5}{6}}}\)

\(=a^{-\frac{1}{3}-\frac{1}{2}-\frac{1}{6}}\cdot b^{\frac{1}{2}+\frac{1}{3}-\frac{5}{6}}==a^{-1}b^0=\cfrac{1}{a}\)

\(x+x^{-1}=3\), 求值:\(\cfrac{x^{\frac{3}{2}}+x^{-\frac{3}{2}}-3}{x^{2}+x^{-2}-6}\)

解析:若 \(x+x^{-1}=3\), 则 \(\left(x+x^{-1}\right)^{2}=9\), 即 \(x^{2}+x^{-2}=7\)

\(\left(x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right)^{2}=x+2+x^{-1}=5\)

且因为 \(x+x^{-1}=3>0\), 所以 \(x>0\)\(x^{\frac{1}{2}}+x^{-\frac{1}{2}}=\sqrt{5}\)

\(x^{\frac{3}{2}}+x^{-\frac{3}{2}}=\left(x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right)\left(x+x^{-1}-1\right)=2\sqrt{5}\)

所以 \(\cfrac{x^{\frac{3}{2}}+x^{-\frac{3}{2}}-3}{x^{2}+x^{-2}-6}=\cfrac{2\sqrt{5}-3}{7-6}=2 \sqrt{5}-3\)

已知 \(10^{m}=2\)\(10^{n}=4\), 则 \(10^{\frac{3 m-n}{2}}\) 的值为\(\qquad\)

$A.2$ $B.\sqrt{2}$ $C.\sqrt{10}$ $D.2\sqrt{2}$

解析: \(10^{\frac{3m-n}{2}}\)\(=\)\(\cfrac{10^{\frac{3 m}{2}}}{10^{\frac{n}{2}}}\)\(=\)\(\cfrac{\left(10^{m}\right)^{\frac{3}{2}}}{\left(10^{n}\right)^{\frac{1}{2}}}\)

\(=\)\(\cfrac{2^{\frac{3}{2}}}{4^{\frac{1}{2}}}=2^{\frac{3}{2}-1}=2^{\frac{1}{2}}=\sqrt{2}\). 故选\(B\).

化简 \(\cfrac{\sqrt{a^{2}b^{2}\sqrt[3]{ab^{2}}}}{\left(a^{\frac{1}{4}}b^{\frac{1}{2}}\right)^{4}\cdot\sqrt[3]{\frac{b}{a}}}\) \((a, b>0)\);

解:由分数指数幂的运算法则可得,

原式 \(=\left(a^{2} b^{2}\right)^{\frac{1}{2}}\left[\left(a b^{2}\right)^{\frac{1}{3}}\right]^{\frac{1}{2}}\div\left(a b^{2}b^{\frac{1}{3}}a^{-\frac{1}{3}}\right)\)

\(=a^{\frac{7}{6}} b^{\frac{4}{3}}\)\(\div\)\((a^{\frac{2}{3}}b^{\frac{7}{3}})\)\(=a^{\frac{7}{6}-\frac{2}{3}}b^{\frac{4}{3}-\frac{7}{3}}\)

\(=a^{\frac{1}{2}}b^{-1}=\cfrac{\sqrt{a}}{b}\)

已知\(a^{\frac{1}{2}}-a^{-\frac{1}{2}}=m\),求值:\(\cfrac{a^2+1}{a}\)

解:由于\(\cfrac{a^2+1}{a}=a+a^{-1}\)

故给已知式子平方,得到 \((a^{\frac{1}{2}}-a^{-\frac{1}{2}})^2=m^2\)

整理得到,\(a+a^{-1}=m^2+2\),故 \(\cfrac{a^2+1}{a}=m^2+2\)

\(3^a=4^b=6^c\),求证:\(\cfrac{2}{c}=\cfrac{2}{a}+\cfrac{1}{b}\)

证明:令 \(3^a=4^b=6^c=k\),则 \(a=\log_3k\)\(b=\log_4k\)\(c=\log_6k\)

故可以得到 \(\cfrac{1}{a}=\log_k3\)\(\cfrac{1}{b}=\log_k4\)\(\cfrac{1}{c}=\log_k6\)

\(\cfrac{2}{c}=2\log_k6=\log_k{36}\) ,又 \(\cfrac{2}{a}+\cfrac{1}{b}=2\log_k3+\log_k4=\log_k{36}\)

\(\cfrac{2}{c}=\cfrac{2}{a}+\cfrac{1}{b}\),证毕。

已知 \(x>0\)\(y>0\),且满足 \(x-\sqrt{xy}-2y=0\) ,求值:\(\cfrac{2x-\sqrt{xy}}{y+\sqrt{xy}}\)

解:由于给定的方程为二元方程,故想到将其想办法变为一元方程,

两边同除以 \(y\) ,得到 \(\cfrac{x}{y}-\sqrt{\cfrac{x}{y}}-2=0\)

\(\sqrt{\cfrac{x}{y}}=t\) ,则方程为\(t^2-t-2=0\),得到\(t=2\),或 \(t=-1\)(舍去)

\(\sqrt{\cfrac{x}{y}}=2\)\(\cfrac{x}{y}=4\)

将分式的分子分母同除以\(y\),得到

\(\cfrac{2x-\sqrt{xy}}{y+\sqrt{xy}}=\cfrac{2\times\frac{x}{y}-\sqrt{\frac{x}{y}}}{1+\sqrt{\frac{x}{y}}}\)

\(=\cfrac{2\times4-2}{1+2\times2}=\cfrac{6}{5}\)

已知 \(a^{2m+n}=2^{-2}\)\(a^{m-n}=2^8\),求值:\(a^{4m+n}\)

解析:先考虑将 \(4m+n\)\(2m+n\)\(m-n\)线性表示;

\(p(2m+n)+q(m-n)=4m+n\),即\(m(2p+q)+(p-q)n=4m+n\)

解得\(p=\cfrac{5}{3}\)\(q=\cfrac{2}{3}\)

\((a^{2m+n})^{\frac{5}{3}}=(2^{-2})^{\frac{5}{3}}\)

\(a^{\frac{10m}{3}+\frac{5n}{3}}=2^{-\frac{10}{3}}\) ①;

\((a^{m-n})^{\frac{2}{3}}=(2^{8})^{\frac{2}{3}}\)

\(a^{\frac{2m}{3}-\frac{2n}{3}}=2^{\frac{16}{3}}\) ②;

\(\times\)②,得到 \(a^{4m+n}=2^2=4\)


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM