MLP(SGD or Adam) Perceptron Neural Network Working by Pytorch(including data preprocessing)


通过MLP多层感知机神经网络训练模型,使之能够根据sonar的六十个特征成功预测物体是金属还是石头。由于是简单的linearr线性仿射层,所以网络模型的匹配度并不高。

这是我的第一篇随笔,就拿这个来练练手吧(O(∩_∩)O)。

相关文件可到github下载。本案例采用python编写。(Juypter notebook)

首先导入所需的工具包

 1 import numpy as np  2 import pandas as pd  3 import matplotlib.pyplot as plt  4 import seaborn as sns  5 import torch  6 %matplotlib inline  7 
 8 plt.rcParams['figure.figsize'] = (4, 4)  9 plt.rcParams['figure.dpi'] = 150
10 plt.rcParams['lines.linewidth'] = 3
11 sns.set() 12 #初始化定义

相关工具包可到官网查看其功能。接下来进入数据的预处理部分。

传统的csv文件一般带有特征标志,例如下面的’tips.csv‘。

1 data = sns.load_dataset("tips") 2 data.head(5)

结果如下:

 

而现在要训练的数据是不带有total_bill,tip,sex这些特征标志的 。

所以要在read_csv的时候加入header=None用于默认创建一个索引。

origin_data = pd.read_csv('sonar.csv',header=None ) origin_data.head(5)

 

此时数据集建立完毕,结果如下:

 

 

0 1 2 3 4 5 6 7 8 9 ... 51 52 53 54 55 56 57 58 59 60
0 0.0200 0.0371 0.0428 0.0207 0.0954 0.0986 0.1539 0.1601 0.3109 0.2111 ... 0.0027 0.0065 0.0159 0.0072 0.0167 0.0180 0.0084 0.0090 0.0032 R
1 0.0453 0.0523 0.0843 0.0689 0.1183 0.2583 0.2156 0.3481 0.3337 0.2872 ... 0.0084 0.0089 0.0048 0.0094 0.0191 0.0140 0.0049 0.0052 0.0044 R
2 0.0262 0.0582 0.1099 0.1083 0.0974 0.2280 0.2431 0.3771 0.5598 0.6194 ... 0.0232 0.0166 0.0095 0.0180 0.0244 0.0316 0.0164 0.0095 0.0078 R
3 0.0100 0.0171 0.0623 0.0205 0.0205 0.0368 0.1098 0.1276 0.0598 0.1264 ... 0.0121 0.0036 0.0150 0.0085 0.0073 0.0050 0.0044 0.0040 0.0117 R
4 0.0762 0.0666 0.0481 0.0394 0.0590 0.0649 0.1209 0.2467 0.3564 0.4459 ... 0.0031 0.0054 0.0105 0.0110 0.0015 0.0072 0.0048 0.0107 0.0094 R

5 rows × 61 columns

 

 

该数据集有61列,其中最后一列应作为所要预测的数据。而观察最后一列可以看到数据为字符类型,而这在训练模

型时是不允许的,故将第六十一列提取并将字符R改为1,M改为0,即用1代表R,用0代表M,达到训练模型的要求。

代码如下:

y_data = origin_data.iloc[:,60] y_data.head(5)#分出需要预测的数据并检验
y_data.shape

调用y_data.shape查看共有多少个数据,以调用循环修改R、M。该数据集共有208个数据。代码如下:

Y=y_data.copy()#由于DataFrame复制会报警,故采用copy
   for i in range(208): if(y_data[i]=='R'): Y[i]=1
        else: Y[i]=0 #将数据R转化为1,数据M转化为0

而后提取数据前六十列作为x数据集用于预测Y。在提取后,将x数据进行标准化处理(之前就是因为没有标准化而导致训练的模型loss曲线上下跌宕)。代码如下:

1 from sklearn.preprocessing import scale 2 x_data=origin_data.iloc[:,:-1] 3 x_data = scale(x_data)

而后将数据x_data,y_data分为训练集和测试集,分割比例为4:1(size=0.2)。将train,test集打包成dataset。这里为了减少GPU的负载,采用Mini-Batch分割数据,调用了dataloader自动将数据集分割成10个batch。

 1 x_data=x_data  2 y_data=Y  3 x_data = np.array(x_data).reshape(208,60)  4 y_data = np.array(y_data).reshape(208,)  5 y_data = y_data.tolist()#重新转化为list形式方便split
 6 x_data = x_data.tolist()  7 #split为train和test集合
 8 from sklearn.model_selection import train_test_split  9 from sklearn.preprocessing import OneHotEncoder 10 #X_train,X_test,y_train,y_test = train_test_split(x_data,y_data,test_size=0.2)
11 X_train, X_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.2) 12 from torch.utils.data import TensorDataset, DataLoader 13 train_dataset = TensorDataset(torch.Tensor(X_train), 14  torch.LongTensor(y_train)) 15 
16 test_dataset = TensorDataset(torch.Tensor(X_test), 17                               torch.LongTensor(y_test))#封装打包
18 TRAIN_SIZE = np.array(X_train).shape[0] 19 BATCH_SIZE = 10
20 NUM_EPOCH = 200
21 iters_per_epoch = TRAIN_SIZE // BATCH_SIZE 22 #采用mini——batch进行迭代,将训练数据分为10份,共迭代200次,共200*int(166/10)=3200次
23 train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) 24 test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True) 25 #打包成loader形式自动分割样本

MLP模型定义类代码如下:(应用了nn.sequential序列构建模型,采用了三层hidden_layer,且中间采用ReLu Function激活函数,最后采用输出在[0,1]之间的Softmax激活函数,模型较简单)。

 1 from torch import nn#nn.sequiential()
 2 class MLP(nn.Module):  3     
 4     def __init__(self, in_dim, hid_dim1, hid_dim2,hid_dim3, out_dim):  5         super(MLP, self).__init__()  6         self.layers = nn.Sequential(  7  nn.Linear(in_dim, hid_dim1),  8  nn.ReLU(),  9  nn.Linear(hid_dim1, hid_dim2), 10  nn.ReLU(), 11  nn.Linear(hid_dim2,hid_dim3), 12  nn.ReLU(), 13  nn.Linear(hid_dim3, out_dim), 14                         nn.Softmax(dim=1)) 15         
16     def forward(self, x): 17         y = self.layers(x) 18         return y

创建一个以SGD为优化器的迭代网络模型,代码如下:

1 net = MLP(in_dim=60, hid_dim1=300, hid_dim2=180,hid_dim3=60, out_dim=10) 2 criterion = nn.CrossEntropyLoss()#采用交叉熵进行loss反馈
3 from torch import optim 4 optimizer = optim.SGD(params=net.parameters(), lr=0.1)#学习率0.1,SGD随机梯度下降优化器
5 optimizer.zero_grad()# 每次优化前都要清空梯度,这里先清空防止意外发生
 1 #SGD迭代
 2 train_loss_history = []  3 test_acc_history = []  4 
 5 for epoch in range(NUM_EPOCH):  6     
 7     for i, data in enumerate(train_loader):  8         
 9         inputs, labels = data 10         
11  optimizer.zero_grad() 12         outputs = net(inputs) 13                 
14         loss = criterion(outputs, labels) 15  loss.backward() 16         
17  optimizer.step() 18         
19         train_loss = loss.tolist() 20  train_loss_history.append(train_loss) 21         
22         if (i+1) % iters_per_epoch == 0: 23             print("[{}, {}] Loss: {}".format(epoch+1, i+1, train_loss)) 24     
25     total = 0 26     correct = 0 27     for data in test_loader: 28         inputs, labels = data 29         outputs = net(inputs) 30         _, preds = torch.max(outputs.data, 1) 31         
32         total += labels.size(0) 33         correct += (preds == labels).sum() 34 
35     print("Accuracy: {:.2f}%".format(100.0 * correct / total))

 

用loss_history列表record了所有的loss数据,此时调用matlab.pyplot包画出loss曲线图

1 import matplotlib.pyplot as plt 2 plt.plot(train_loss_history)

输出如下:

[<matplotlib.lines.Line2D at 0x25be01fcdf0>]
 
          
 画confusion matrix,计算评估指标
 1 all_dataset = TensorDataset(torch.Tensor(x_data),  2  torch.LongTensor(y_data))  3 all_loader = DataLoader(all_dataset, batch_size=BATCH_SIZE, shuffle=True)  4 #这里为了方便,将所有数据打包放入模型中训练
 5 total=[]  6 correct=0  7 for data in all_loader:  8             inputs,labels = data  9             outputs = net(inputs) 10             _, preds = torch.max(outputs.data, 1) 11 
12  total .append(preds.tolist()) 13             #correct += (preds == labels).sum()
14 #将预测结果存入total这个列表中
15 total_down = [token for st in total for token in st] 16 
17 #画confusion_matrix
18 from sklearn.metrics import confusion_matrix 19 cm = confusion_matrix(y_data, total_down) 20 sns.heatmap(cm, annot=True, fmt = "d", cmap = "Blues", annot_kws={"size": 20}, cbar = False) 21 plt.ylabel('True') 22 plt.xlabel('Predicted') 23 sns.set(font_scale = 2) 24 
25 acc=0 26 for i in range(208): 27     if y_data[i]==total_down[i]: 28         acc=acc+1
29 acc 30 TP=FN=FP=TN=0 31 for i in range(208): 32     if y_data[i]==1 and total_down[i]==1: 33         TN=TN+1
34     if y_data[i]==0 and total_down[i]==0: 35         TP=TP+1
36     if y_data[i]==1 and total_down[i]==0: 37         FP=FP+1
38     if y_data[i]==0 and total_down[i]==1: 39         FN=FN+1
40         
41 print("{} {} {} {}".format(TP,FP,FN,TN)) 42 
43 Accuracy= (TP+TN)/(TP+TN+FP+FN) 44 Precison = TP/(TP+FP) 45 Sensitivity = TP/(TP+FN) 46 Specificity = TN/(TN+FP) 47 print("Accuracy is:{} Precision is:{} Sensitivity is:{} Specificity is:{}".format(Accuracy,Precison,Sensitivity,Specificity)) 48 #计算评估指标
49 
50 print('总个数:{} 正确预测个数:{} 错误预测个数:{}'.format(TP+TN+FP+FN,TP+TN,FP+FN))

 

若采用Adam优化器,则代码与结果如下:
 1 from torch import optim  2 net = MLP(in_dim=60, hid_dim1=540, hid_dim2=180,hid_dim3=30, out_dim=10)#调整了隐藏层参数
 3 optimizer = optim.Adam(params=net.parameters(), lr=0.001)#更换为Adam优化器
 4 criterion = nn.CrossEntropyLoss()  5 
 6 train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)  7 test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True)  8 train_loss_history = []  9 test_acc_history = [] 10 #Adam优化器迭代
11 for epoch in range(NUM_EPOCH): 12     
13     for i, data in enumerate(train_loader): 14         
15         inputs, labels = data 16         
17  optimizer.zero_grad() 18         outputs = net(inputs) 19                 
20         loss = criterion(outputs, labels) 21  loss.backward() 22         
23  optimizer.step() 24         
25         train_loss = loss.tolist() 26  train_loss_history.append(train_loss) 27         
28         if (i+1) % iters_per_epoch == 0: 29             print("[{}, {}] Loss: {}".format(epoch+1, i+1, train_loss)) 30     
31     total = 0 32     correct = 0 33     for data in test_loader: 34         inputs, labels = data 35         outputs = net(inputs) 36         _, preds = torch.max(outputs.data, 1) 37         
38         total += labels.size(0) 39         correct += (preds == labels).sum() 40 
41     print("Accuracy: {:.2f}%".format(100.0 * correct / total))
1 import matplotlib.pyplot as plt 2 plt.plot(train_loss_history)
[<matplotlib.lines.Line2D at 0x25be08b49d0>]
 
             
 
模型训练完毕后,可通过将所有数据导入模型训练得出Confusion Matrix以查看性能指标,根据自己的实际需求调整模型以达到更优化的性能。
这里仅贴上画Adam模型的Matrix的代码。中间过程请仿照上述代码自行拟定。
1 #画confusion_matrix
2 from sklearn.metrics import confusion_matrix 3 cm = confusion_matrix(y_data, total_down) 4 sns.heatmap(cm, annot=True, fmt = "d", cmap = "Blues", annot_kws={"size": 20}, cbar = False) 5 plt.ylabel('True') 6 plt.xlabel('Predicted') 7 sns.set(font_scale = 2)

Matrix如下:

 

 

 通过简单计算得到Precision,Sensitivity,Accuracy,Specificity性能指标(与上面SGD相同)

输出如下:

Accuracy is:0.6201923076923077  Precision is:0.6311475409836066  Sensitivity is:0.6936936936936937  Specificity is:0.5360824742268041

本模型采用IPython编写,如用Pycharm等请自行删除一些代码。

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM