中国剩余定理CRT
正整数m1,m2,...,mk两两互素,对b1,b2,...,bk的同余式组为
\[\begin{cases} x \equiv b_1\; mod \;m_1\\ x \equiv b_2\; mod \;m_2\\ \quad\quad\vdots\\ x \equiv b_k\; mod \;m_k\\ \end{cases} \]
在mod M
\[M = \prod_{i = 1}^{k}m_i \]
的情况下有唯一解
\[x = (\sum_{i=1}^k b_iM_iM'_i)\;mod\;M \]
其中
\[M_i = \frac{M}{m_i} \]
\[M'_i = M_i^{-1}\;mod\;m_i \]
python代码实现:
import gmpy2
def crt(b,m):
#判断是否互素
for i in range(len(m)):
for j in range(i+1,len(m)):
if gmpy2.gcd(m[i],m[j]) != 1:
print("m中含有不是互余的数")
return -1
#乘积
M = 1
for i in range(len(m)):
M *= m[i]
#求M/mi
Mm = []
for i in range(len(m)):
Mm.append(M // m[i])
#求Mm[i]的乘法逆元
Mm_ = []
for i in range(len(m)):
_,a,_ = gmpy2.gcdext(Mm[i],m[i])
Mm_.append(int(a % m[i]))
#求MiM'ibi的累加
y = 0
for i in range(len(m)):
print(Mm[i] * Mm_[i] * b[i])
y += (Mm[i] * Mm_[i] * b[i])
y = y % M
return y