Pytest参数化
- @pytest.mark.parametrize(argnames, argvalues)
- argnames: 要参数化的变量, string(逗号分隔), list, tuple
- argvalues: 参数化的值,list, list[tuple]
新建一个 简单的 test_demo.py 代码内容为:
class TestClass:
@pytest.mark.parametrize('a,b', [(1, 2), (2, 3), (4, 5)])
def test_a(self, a, b):
# print(f'login name is {}')
print(a + b)
print('1')
def test_b(self):
print('2')
def test_c(self, login):
print(f'login name is {login}')
print('3')
然后在控制台中 输入 上一节 学到的 -k(指定函数) -v(打印详细内容) -s (输出print内容)
pytest -v -k test_a -s
可以看到想要的结果
测试结构化的简单demo
读取yaml文件, 先建立一个数组的demo
yaml的语法 可以参考 https://www.runoob.com/w3cnote/yaml-intro.html
-
- 10
- 20
-
- 30
- 40
然后建立一个Pytest去读取
import pytest
import yaml
class TestClass:
@pytest.mark.parametrize('a,b', yaml.safe_load(open('env.yml')))
def test_a(self, a, b):
print(a + b)
print('1')
常常我们需要结构化我们的测试环境,一般配置文件放在yaml中,简单的读取
yml 文件内容:
-
languages:
- Ruby
- Perl
- Python
websites:
YAML: yaml.org
Ruby: ruby-lang.org
Python: python.org
Perl: use.perl.org
dev: # 生产环境
ip: 127.0.0.1
---- # 注意点 当不知道自己写的yml格式对象是否正确的时候可以通过读取出来来验证
class TestClass:
def test_b(self):
print(yaml.safe_load(open('env.yml')))
# 然后执行命令行: pytest -v -k test_b -s 就可以看到写的yml
# 下面是读取配置文件的写法,前提是知道自己的yml是什么样子
import pytest
import yaml
class TestClass:
@pytest.mark.parametrize('env', yaml.safe_load(open('env.yml')))
def test_a(self, env):
if "dev" in env:
# print(env) 可以先打印出来看看 是什么结构
print(f'生产环境, ip地址为{env.get("dev").get("ip")}')
elif "test" in env:
print('测试环境')
然后执行命令: pytest -v -k test_a -s 就可以看到执行的结果
关于和unittest的一些差不多的用法
有两个前置方法,两个后置方法
- setup()
- setupClass()
- teardown()
- teardownClass()
函数级别用法demo, 新建一个test_demo2.py文件:
import pytest
def setup_module():
print("py模块开始前只执行一次,打开)
def teardown_module():
print("py模块结束后只执行一次,关闭")
def setup_function():
print("函数开始前都执行setup_function)
def teardown_function():
print("函数结束后都执行teardown_function")
def test_one():
print("one")
def test_two():
print("two")
if __name__ == '__main__':
pytest.main(["-q", "-s", "-ra", "test_demo2.py"]) # -q 简单显示结果
执行即可得到结果
类级别用法demo, 新建一个test_demo3.py文件:
import pytest
class TestCase():
def setup_class(self):
print("====整个测试类开始前只执行一次setup_class====")
def teardown_class(self):
print("====整个测试类结束后只执行一次teardown_class====")
def setup_method(self):
print("==类里面每个用例执行前都会执行setup_method==")
def teardown_method(self):
print("==类里面每个用例结束后都会执行teardown_method==")
def setup(self):
print("=类里面每个用例执行前都会执行setup=")
def teardown(self):
print("=类里面每个用例结束后都会执行teardown=")
def test_three(self):
print("one")
def test_four(self):
print("two")
if __name__ == '__main__':
pytest.main(["-q", "-s", "-ra", "test_demo3.py"]) # -q 简单显示结果
当遇到一些需要针对某个测试用例使用的,比如登陆什么的时候,上面这种针对整个脚本全局生效的,明显就不合适使用了,所以要用上一节提到的 @pytest.fixture(),就可以解决这些场景,但是当有多个测试用例文件(test_*.py)的所有用例都需要用登录功能来作为前置操作,那就不能把登录功能写到某个用例文件中去,所以需要一个conftest.py来管理一些全局的fixture
conftest.py配置fixture注意事项
- conftest.py 会被pytest 默认读取,不用导入
- 文件名是固定的,一个包可以有一个,一个项目可以有多个
项目结构如下:
conftest.py代码
最顶层的conftest.py,一般写全局的fixture
import pytest
# scope:可以理解成fixture的作用域,默认:function,还有class、module、package、session四个【常用】
# function 每一个函数或方法都会调用
# class 每一个类调用一次,一个类可以有多个方法
# module,每一个.py文件调用一次,该文件内又有多个function和class
# session 是多个文件调用一次,可以跨.py文件调用,每个.py文件就是module
@pytest.fixture(scope="session")
def login():
print("====登录功能,返回账号,token===")
name = "lakes"
token = "something you ned guess!"
yield name, token
print("====退出登录!!!====") # 退出登录,最后才会执行
# autouse:默认:False,需要用例手动调用该fixture;如果是True,所有作用域内的测试用例都会自动调用该fixture
@pytest.fixture(autouse=True)
def get_info(login):
name, token = login
print(f"== 每个用例都调用的外层fixture:打印用户token: {token} ==")`
@pytest.fixture()
def get_test():
print('测试autouse=False') # 不会打印
test_demo1.py
def test_get_info(login):
name, token = login
print("***基础用例:获取用户个人信息***")
print(f"用户名:{name}, token:{token}")
01_run.py 运行主文件
import pytest
if __name__ == '__main__':
pytest.main(["-s", "../test_01/"]) # 执行入口
主要的测试可以正常运行的话,就可以加入一些其他平台的测试
选了微博小红书和今日头条来做实验,现在的目录结构是这这样子
外部是上面的内容。加了上个新的文件夹,分别是 test_redbook 、test_toutiao、 test_weibo
test_redbook/test_red1.py 文件内容 什么都不加,只是调用最外层的conftest.py的 fixture,login
def test_no_fixture(login):
print("==没有__init__测试用例,我进入小红书了==", login) # 输出打印的只是这句话
test_toutiao/conftest.py 项目里面除了最外层的conftest.py 还新增了一个conftest, 这个这个目录下的conftest.py, 最外层的可以用,目录下的也可以用
import pytest
# 针对头条独有的,function代表每一个函数或方法都会调用
@pytest.fixture(scope="function")
def open_toutiao(login):
name, token = login
print(f"&&& 用户 {name} 返回头条首页 &&&")
test_toutiao/test_t1.py 来测试function是否生效,在测试用例执行前会执行一遍,这里执行了两次
class TestToutiao:
def test_case1_01(self, open_toutiao):
print("查看头条今日关注")
def test_case1_02(self, open_toutiao):
print("查看头条今日的用户")
test_weibo/conftest.py 这个跟上面的一样,但是scope进行了更改
import pytest
@pytest.fixture(scope="module")
def open_weibo(login):
name, token = login
print(f"###用户 {name} 打开微博 ###")
@pytest.fixture()
def close_weibo(login):
name, token = login
print(f"###用户 {name} 离开了微博 ###")
test_weibo/test_case1.py 来测试function是否生效,在测试用例中只执行了一遍
def test_case2_01(open_weibo):
print("微博超话内容")
def test_case2_02(open_weibo):
print("微博热点内容")
def test_case2_04(close_weibo):
print("微博关闭44444444")
def test_case2_05(close_weibo):
print("微博关闭555555")
然后直接执行 python 01_run.py
完。
参考: 小菠萝测试笔记 https://www.cnblogs.com/poloyy/p/12641991.html
下一次随笔写的是测试报告的美化与定制 Allure测试框架的使用