正投影与斜投影


正投影

设物体上任一点的三维坐标为\(p(x,y,z)\),投影后的三维坐标为\(p^,(x^,,y^,,z^,)\),则正交投影方程为:

\[ \left\{\begin{array}{rcl} x^,=x \\ y^,=y \\ z^,=0 \end{array} \right. \]

齐次坐标矩阵表示为:

\[\left[\begin{matrix} x^, \\ y^, \\ z^, \\ 1 \end{matrix}\right]= \left[\begin{matrix} x \\ y \\ 0 \\ 1 \end{matrix}\right]= \left[\begin{matrix} 1 & 0 & 0 & 0 \\ 0 &1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{matrix}\right] \left[\begin{matrix} x \\ y \\ z \\ 1 \end{matrix}\right] \]

其中,正交投影矩阵为:

\[ S=\left[\begin{matrix} 1 & 0 & 0 & 0 \\ 0 &1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{matrix}\right] \]

斜投影

斜投影变换

  • 斜投影是投影方向不垂直投影面的平行投影。
  • 记投影方向与投影面\(xoy\)的夹角为\(\alpha\),投影线与\(ox\)正向的夹角为\(\beta\),则斜投影变换为:

\[ \left\{\begin{array}{rcl} x^,=x-zcot\alpha cos\beta \\ y^, =y-zcot\alpha sin \beta \end{array}\right. \]

齐次方程为:

\[ \left[\begin{matrix} x^, \\ y^, \\ z^, \\ 0 \end{matrix}\right]= \left[\begin{matrix} 1 & 0 & -cot\alpha cos\beta & 0 \\ 0 &1 & -cot\alpha sin \beta & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{matrix}\right] \left[\begin{matrix} x \\ y \\ z \\ 1 \end{matrix}\right] \]

斜等测投影与斜二测投影

  • 斜等测投影:\(\beta=45^\circ\)\(\alpha=45^\circ\)

\[ \left\{\begin{array}{rcl} x^,=x-0.707z \\ y^, =y-0.707z \end{array}\right. \]

  • 斜二测投影:\(\beta=45^\circ\)\(\alpha \approx 63.4^\circ\)\(cot\alpha =0.5\)

\[ \left\{\begin{array}{rcl} x^,=x-0.3536z \\ y^, =y-0.3536z \end{array}\right. \]


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM