梯度下降与正规方程的比较


梯度下降与正规方程的比较:

梯度下降:需要选择学习率α,需要多次迭代,当特征数量n大时也能较好适用,适用于各种类型的模型

正规方程:不需要选择学习率α,一次计算得出,需要计算${{\left( {{X}^{T}}X \right)}^{-1}}$,如果特征数量n较大则运算代价大,因为矩阵逆的计算时间复杂度为$O(n3)$,通常来说当$n$小于10000 时还是可以接受的,只适用于线性模型,不适合逻辑回归模型等其他模型


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM