un=(-1)^n ln(1+1/(√n)),un的级数条件收敛


设un=(-1)^n ln(1+1/(√n)), 则级数
A.\x05∑(n=1, ∞) un与∑(n=1, ∞) (un)^2收敛
B.\x05∑(n=1, ∞) un与∑(n=1, ∞) (un)^2都发散
C.\x05∑(n=1, ∞) un收敛而∑(n=1, ∞) (un)^2发散
D.\x05∑(n=1, ∞) un发散而∑(n=1, ∞) (un)^2收敛
请讲一下详细过程,谢谢,答案是先C

 

简单,un(-1)^n ln(1+1/(√n))等价于(-1)^n (1/(√n)),后者对应的是交错级数,故收敛;平方以后就成了调和级数了,是发散的,所以选C,


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM