傅里叶级数


傅里叶级数的核心思想是把一个周期函数(这个函数需要满足一些mild restrictions)展开为相互正交的三角函数之和。
类似函数在某点的泰勒展开式,只不过傅里叶级数和泰勒级数有主要的几点不同。

  • 不需要在某点展开,是对整个自变量取值范围的无限逼近。
  • 要求是周期函数。
  • 两两正交。

函数正交的定义:

注意,线性无关的一组基底就可以保证基底系数的唯一性,并不需要正交,正交比线性无关更强。

三角函数的三个特征

  • 相位
  • 幅度
  • 频率

因此一个周期函数用傅里叶级数表示出来之后,把系数算在内,包含了四种信息。而频域图就是包含了幅度和频率。

而知乎上非常火的掐死教程中的注解图:

频域图像里其实还包括了振幅。

  • 当函数为偶函数时,傅里叶级数中只有余弦成分,函数为奇函数时,只有正弦成分。
  • 傅里叶系数可以由积分得到。
    • 因为傅里叶级数两两正交,因此只要在等式两边同时乘上所需要计算的基底,然后积分,其他项因为正交都变成了0,就可以得到对应的系数。

再补充一点,千千静听动画效果里的频谱是某时刻的频谱分布,而用AE或者其它软件查看文件是否真无损时,看到的频谱是千千静听的频谱分布的时序积分。


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM