学习率预热(transformers.get_linear_schedule_with_warmup)


学习率预热

  • 在预热期间,学习率从0线性增加到优化器中的初始lr。

  • 在预热阶段之后创建一个schedule,使其学习率从优化器中的初始lr线性降低到0

Parameters

  • optimizer (Optimizer) – The optimizer for which to schedule the learning rate.

  • num_warmup_steps (int) – The number of steps for the warmup phase.

  • num_training_steps (int) – The total number of training steps.

  • last_epoch (int, optional, defaults to -1) – The index of the last epoch when resuming training.

Returns

  • torch.optim.lr_scheduler.LambdaLR with the appropriate schedule.
# training steps 的数量: [number of batches] x [number of epochs].
total_steps = len(train_dataloader) * epochs

# 设计 learning rate scheduler
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps = 50, 
                                            num_training_steps = total_steps)


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM