深度学习--制作数据集前提:标注工具


摘自他出,便于学习。原文链接:https://blog.csdn.net/chaipp0607/article/details/79036312

深度学习图像标注工具汇总

 

  对于监督学习算法而言,数据决定了任务的上限,而算法只是在不断逼近这个上限。世界上最遥远的距离就是我们用同一个模型,但是却有不同的任务。但是数据标注是个耗时耗力的工作,下面介绍几个图像标注工具:

Labelme

Labelme适用于图像分割任务的数据集制作:


它来自下面的项目:https://github.com/wkentaro/labelme
该软件实现了最基本的分割数据标注工作,在save后将保持Object的一些信息到一个json文件中,如下:
https://github.com/wkentaro/labelme/blob/master/static/apc2016_obj3.json
同时该软件提供了将json文件转化为labelimage的功能:

 

labelImg

  Labelme适用于图像检测任务的数据集制作:


它来自下面的项目:https://github.com/tzutalin/labelImg
其中标签存储功能和“Next Image”、“Prev Image”的设计使用起来比较方便。
该软件最后保存的xml文件格式和ImageNet数据集是一样的。

 

yolo_mark

  yolo_mark适用于图像检测任务的数据集制作:


它来自于下面的项目:https://github.com/AlexeyAB/Yolo_mark
它是yolo2的团队开源的一个图像标注工具,为了方便其他人使用yolo2训练自己的任务模型。在linux和win下都可运行,依赖opencv库。

 

Vatic

  Vatic适用于图像检测任务的数据集制作:


它来自下面的项目:http://carlvondrick.com/vatic/
比较特别的是,它可以做视频的标注,比如一个25fps的视频,只需要隔100帧左右手动标注一下物体的位置,最后在整个视频中就能有比较好的效果。这依赖于软件集成的opencv的追踪算法。

 

Sloth

  Sloth适用于图像检测任务的数据集制作:


它来自下面的项目:
https://github.com/cvhciKIT/sloth
https://cvhci.anthropomatik.kit.edu/~baeuml/projects/a-universal-labeling-tool-for-computer-vision-sloth/
在标注label的时候,该软件可以存储标签,并呈现标注过的图片中的bbox列表。

 

Annotorious

  Annotorious适用于图像检测任务的数据集制作:

它来自下面的项目:
http://annotorious.github.io/index.html
代码写的相当规范,提供了相应的API接口,方便直接修改和调用。

 

RectLabel

  RectLabel适用于图像检测任务的数据集制作:

它来自下面的项目:
https://rectlabel.com/
这是一个适用于Mac OS X的软件,而且可以在apple app store中直接下载。

VoTT

  VoTT适用于图像检测任务的数据集制作:

它来自下面的项目:
https://github.com/Microsoft/VoTT/
微软的开源工具,既可以标注视频,也可以标注图片,而且支持已有模型的集成,功能强大。

IAT – Image Annotation Tool

  IAT适用于图像分割任务的数据集制作:

 

 

 
它来自下面的项目:
http://www.ivl.disco.unimib.it/activities/imgann/
比较有特色的是,它支持一些基础形状的选择,比如要分割的物体是个圆形的,那么分割时可以直接选择圆形,而不是用多边形选点。

 

images_annotation_programme

  images_annotation_programme适用于图像检测任务的数据集制作:

它来自下面的项目:
https://github.com/frederictost/images_annotation_programme



免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM