参考文献
[1]Qiu F, Wang J. Chance-Constrained Transmission Switching With Guaranteed Wind Power Utilization[J]. IEEE Transactions on Power Systems, 2015, 30(3): 1270–1278.
DOI:10.1109/TPWRS.2014.2346987
原始机会约束
下面是一个典型的机会约束:风电消纳量大于指定比例以及小于可用风电的概率必须大于 \(1-\in\)。
利用SAA转化为MILP约束
上述机会约束可用如下约束代替:
\(C_{wt}^m\ \ \ \forall m \in {\mathop{\rm A}\nolimits}\)为随机向量\({{{\tilde C}_{wt}}}\)的采样样本,\(z_m\)取0或者1分别表示约束\(m\)成立或者被松弛。
这种转换就是利用\(m\)个样本中有\(k\)个样本成立来等效代替概率(当\(m\)足够大时,这种等效是合理的,对应的概率即为 \(k/m \ \approx \ \in\)),这和SAA的名字也是相符的。
但是这种转换显然会导致得到的MILP问题求解效率较低,实际应用的话需要进一步采用某些算法。
Note that SAA does not guarantee a feasible solution and the feasibility of a solution is probabilistic (i.e., we can only claim that the solution is feasible with a certain probability). Obtaining a feasible solution with a high confidence level requires a sufficiently large number of Monte Carlo samples, which results in a MILP that is difficult to solve. Therefore, efficient solution approaches are necessary to apply SAA in a practical situation.