1 模块创建和数据准备
继续在 UserBehaviorAnalysis 下新建一个 maven module 作为子项目,命名为LoginFailDetect。在这个子模块中,我们将会用到 flink 的 CEP 库来实现事件流的模
式匹配,所以需要在 pom 文件中引入 CEP 的相关依赖:
<dependencies> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-cep-scala_${scala.binary.version}</artifactId> <version>${flink.version}</version> </dependency> </dependencies>
对于网站而言,用户登录并不是频繁的业务操作。如果一个用户短时间内频繁登录失败,就有可能是出现了程序的恶意攻击,比如密码暴力破解。因此我们考虑,
应该对用户的登录失败动作进行统计,具体来说,如果同一用户(可以是不同 IP)在 2 秒之内连续两次登录失败,就认为存在恶意登录的风险,输出相关的信息进行
报警提示。这是电商网站、也是几乎所有网站风控的基本一环。
2.1 状态编程
由于同样引入了时间,我们可以想到,最简单的方法其实与之前的热门统计类似,只需要按照用户 ID 分流,然后遇到登录失败的事件时将其保存在 ListState 中,
然后设置一个定时器,2 秒后触发。定时器触发时检查状态中的登录失败事件个数,如果大于等于 2,那么就输出报警信息。
在 src/main/scala 下创建 LoginFail.scala 文件,新建一个单例对象。定义样例类LoginEvent,这是输入的登录事件流。登录数据本应该从 UserBehavior 日志里提取,
由于 UserBehavior.csv 中没有做相关埋点,我们从另一个文件 LoginLog.csv 中读取登录数据。
package com.atguigu import org.apache.flink.api.common.state.{ListState, ListStateDescriptor, ValueState, ValueStateDescriptor} import org.apache.flink.streaming.api.TimeCharacteristic import org.apache.flink.streaming.api.functions.KeyedProcessFunction import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor import org.apache.flink.streaming.api.scala._ import org.apache.flink.streaming.api.windowing.time.Time import org.apache.flink.util.Collector import scala.collection.mutable.ListBuffer //定义输入输出类 case class LoginEvent(userId:Long, ip:String, eventType:String, eventTime: Long) case class Warning(userId:Long, firstFailTime:Long, lastFailTime:Long, warningMsg:String) object LoginFail { def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.setParallelism(1) env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val resource = getClass.getResource("/LoginLog.csv") //val loginEventStream:DataStream[LoginEvent] = env.readTextFile(resource.getPath) val loginEventStream:DataStream[LoginEvent] = env.readTextFile("C:\\Users\\DELL\\IdeaProjects\\UserBehaviorAnalysis\\LoginFailDetect\\src\\main\\resources\\LoginLog.csv") .map(data => { val dataArray = data.split(",") LoginEvent(dataArray(0).toLong, dataArray(1), dataArray(2), dataArray(3).toLong) }) .assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[LoginEvent](Time.seconds(3)) { override def extractTimestamp(t: LoginEvent): Long = t.eventTime*1000L }) val loginWarningStream:DataStream[Warning] = loginEventStream .keyBy(_.userId) .process( new LoginFailWarning(2)) loginWarningStream.print() env.execute("login fail job") } } // 实现自定义的ProcessFunction class LoginFailWarning(maxFailTime: Int) extends KeyedProcessFunction[Long, LoginEvent, Warning]{ // 定义list状态,用来保存2秒内所有的登录失败事件 lazy val LoginFailListState: ListState[LoginEvent] = getRuntimeContext.getListState(new ListStateDescriptor[LoginEvent]("saved-logingfail",classOf[LoginEvent])) // 定义value状态,用来保存定时器的时间戳 lazy val timerTsState: ValueState[Long] = getRuntimeContext.getState(new ValueStateDescriptor[Long]("time-ts",classOf[Long])) override def processElement(value: LoginEvent, context: KeyedProcessFunction[Long, LoginEvent, Warning]#Context, collector: Collector[Warning]): Unit = { if(value.eventType == "fail"){ LoginFailListState.add(value) if(timerTsState.value()==0){ val ts = value.eventTime*1000L + 2000L context.timerService().registerEventTimeTimer(ts) timerTsState.update(ts) } }else{ context.timerService().deleteEventTimeTimer(timerTsState.value()) LoginFailListState.clear() timerTsState.clear() } } override def onTimer(timestamp: Long, ctx: KeyedProcessFunction[Long, LoginEvent, Warning]#OnTimerContext, out: Collector[Warning]): Unit = { val allLoginFailList:ListBuffer[LoginEvent] = new ListBuffer[LoginEvent] val iter = LoginFailListState.get().iterator() while(iter.hasNext){ allLoginFailList += iter.next() } if(allLoginFailList.length >= maxFailTime){ out.collect(Warning( ctx.getCurrentKey, allLoginFailList.head.eventTime, allLoginFailList.last.eventTime, "login fall in 2s for " + allLoginFailList.length + " times.")) } LoginFailListState.clear() timerTsState.clear() } }
CEP
package com.atguigu.loginfail_detect import java.util import com.atguigu.LoginFail.getClass import org.apache.flink.cep.PatternSelectFunction import org.apache.flink.cep.scala.CEP import org.apache.flink.cep.scala.pattern.Pattern import org.apache.flink.streaming.api.TimeCharacteristic import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor import org.apache.flink.streaming.api.scala._ import org.apache.flink.streaming.api.windowing.time.Time import org.apache.flink.util.Collector import scala.collection.mutable.ListBuffer //定义输入输出类 case class LoginEvent(userId:Long, ip:String, eventType:String, eventTime: Long) case class Warning(userId:Long, firstFailTime:Long, lastFailTime:Long, warningMsg:String) object LoginFailCEP { def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.setParallelism(1) env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val resource = getClass.getResource("/LoginLog.csv") //val loginEventStream:DataStream[LoginEvent] = env.readTextFile(resource.getPath) val loginEventStream:DataStream[LoginEvent] = env.readTextFile("C:\\Users\\DELL\\IdeaProjects\\UserBehaviorAnalysis\\LoginFailDetect\\src\\main\\resources\\LoginLog.csv") .map(data => { val dataArray = data.split(",") LoginEvent(dataArray(0).toLong, dataArray(1), dataArray(2), dataArray(3).toLong) }) .assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[LoginEvent](Time.seconds(3)) { override def extractTimestamp(t: LoginEvent): Long = t.eventTime*1000L }) // 1.定义匹配的模式 val loginFailPattern: Pattern[LoginEvent, LoginEvent] = Pattern .begin[LoginEvent]("firstFail").where(_.eventType == "fail") .next("secondFail").where(_.eventType == "fail") .within(Time.seconds(2)) // 2 在分组之后的数据流上应用模式,等到一个PatternStream val patternStream = CEP.pattern(loginEventStream.keyBy(_.userId), loginFailPattern) // 3 将检测到的事件序列,转换输出报警信息 val loginFailStream: DataStream[Warning] = patternStream.select( new LoginFailDetect()) // 4 打印输出 loginFailStream.print() env.execute("login fail job") } } // 自定义PatternSelectFunction, 用来检测到的连续登陆失败事件,包装成报警信息输出 class LoginFailDetect extends PatternSelectFunction[LoginEvent, Warning]{ override def select(map: util.Map[String, util.List[LoginEvent]]): Warning = { // map 例存放的就是匹配到的一组事件,key是定义好的事件模式名称 val firstLoginFail = map.get("firstFail").get(0) val secondLoginFail = map.get("secondFail").get(0) Warning( firstLoginFail.userId, firstLoginFail.eventTime, secondLoginFail.eventTime, "login fail") } }