实证研究中,当个体接受处理的可能性或接受处理产生的效应与该个体随时间变动的因素相关时,可能不再满足平行趋势假设。在违背平行趋势假设的情况下,不能直接采用 DID 估计处理效应。部分研究采用了增加控制变量的方法,在回归中进一步控制了交互固定效应 ( interactive fixed effects ) 或随时间变化的混合因素 ( time-varing confounding factors ) 。
与此同时,部分学者通过改变样本的权重,使处理组与新构造的控制组在接受处理前具有相似的变化趋势。这类方法包括合成控制法 ( synthetic control method ) 、倾向得分匹配法 ( propensity score matching ) 、逆概率加权法 ( inverse probability weighting ) 等。
Ahlfeldt (2018) 指出,这类计量方法只适用于估计单一处理效应的情形;在需要区分多类相互关联的处理效应的研究情境中,或面对连续型 DID 的情形时,这些方法不再适用。Ahlfeldt (2018) 由此提出 Weighted Parallel Trends DD ( 以下简称 WPT DD ) 的估计方法。下文主要对 Ahlfeldt (2018) 提出的网格搜索算法 ( Grid Search ) 和迭代法 ( Iterative Approach )进行介绍。
————————————————
版权声明:本文为CSDN博主「arlionn」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/arlionn/article/details/105590731