sklearn中正则化的Lasso问题


Lasso,也就是L1正则项,它倾向于完全消除最不重要特征的权重(置为0),就是说Lasso会自动执行特征选择,并输出一个稀疏模型。

问题:Lasso在特征数量超过训练实例的数量时(比如10条数据20个特征),或者特征之间相关性比较强,Lasso就会很不稳定。

总结:Lasso可进行特征选择,不代表不需要人为进行筛选,需要去掉相关性较强的特征。


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM