python中 x[:,0]和x[:,1] 理解与shuffle VS permutation 实际是关于梯度优化的问题


x[m,n]是通过numpy库引用数组或矩阵中的某一段数据集的一种写法,

m代表第m维,n代表m维中取第几段特征数据。

通常用法:

x[:,n]或者x[n,:]

1.x[:,n]表示在全部数组(维)中取第n个数据,直观来说,x[:,n]就是取所有集合的第n个数据, 

1 import numpy as np
2  
3 X = np.array([[0,1],[2,3],[4,5],[6,7],[8,9],[10,11],[12,13],[14,15],[16,17],[18,19]])
4 print X[:,0]

X[:,0]输出结果是:

 

 

1 import numpy as np
2  
3 X = np.array([[0,1],[2,3],[4,5],[6,7],[8,9],[10,11],[12,13],[14,15],[16,17],[18,19]])
4 print X[:,1]

 

2. x[n,:]表示在n个数组(维)中取全部数据,直观来说,x[n,:]就是取第n集合的所有数据, 

X[1,:]即取第一维中下标为1的元素的所有值,输出结果:

 

 

 

X[:,  m:n],即取所有数据的第m到n-1列数据,含左不含右

例:输出X数组中所有行第1到2列数据

X = np.array([[0,1,2],[3,4,5],[6,7,8],[9,10,11],[12,13,14],[15,16,17],[18,19,20]])
print X[:,1:3]

 

以下 numpy.random.shuffle() 简称 shuffle,numpy.random.permutation() 简称 permutation。

shuffle 的参数只能是 array_like,而 permutation 除了 array_like 还可以是 int 类型,如果是 int 类型,那就随机打乱 numpy.arange(int)。
shuffle 返回 None,这点尤其要注意,也就是说没有返回值,而 permutation 则返回打乱后的 array。

def permutation(self, object x):
    '''这里都是帮助文档,我就省略了'''
    if isinstance(x, (int, long, np.integer)):
        arr = np.arange(x)
    else:
        arr = np.array(x)
    self.shuffle(arr)
    return arr

所以permutation内部调用的也是shuffle

1.获取mini-batch:

def random_mini_batches(X,Y,mini_batch_size=64,seed=0):

 第一,打乱顺序

permutation = list(np.random.permutation(m)) #它会返回一个长度为m的随机数组,且里面的数是0到m-1
shuffled_X = X[:,permutation]   #将每一列的数据按permutation的顺序来重新排列。
shuffled_Y = Y[:,permutation].reshape((1,m))

X - 输入数据,维度为(输入节点数量,样本的数量) Y - 对应的是X的标签,【1 | 0】(蓝|红),维度为(1,样本的数量)

这一步就相当于对X的维度=1随机取,等于被打乱了(因为那个位置对应的都是样本)

第二.分割

 num_complete_minibatches = math.floor(m / mini_batch_size) #把你的训练集分割成多少份,请注意,如果值是99.99,那么返回值是99,剩下的0.99会被舍弃
    for k in range(0,num_complete_minibatches):
        mini_batch_X = shuffled_X[:,k * mini_batch_size:(k+1)*mini_batch_size]
        mini_batch_Y = shuffled_Y[:,k * mini_batch_size:(k+1)*mini_batch_size]

 

类似于

a = np.array([[1,2,3,4,5,6,7,8,9],
                      [9,8,7,6,5,4,3,2,1],
                      [1,2,3,4,5,6,7,8,9]])
k=1
mini_batch_size=3
print(a[:,1*3:(1+1)*3]) #从第4列到第6列
'''
[[4 5 6]
[6 5 4]
[4 5 6]]
'''
k=2
print(a[:,2*3:(2+1)*3]) #从第7列到第9列
'''
[[7 8 9]
[3 2 1]
[7 8 9]]
'''

包含动量的梯度下降:

这里的V还是指的dw与db的值

def initialize_velocity(parameters):
    """
    初始化速度,velocity是一个字典:
        - keys: "dW1", "db1", ..., "dWL", "dbL" 
        - values:与相应的梯度/参数维度相同的值为零的矩阵。
    参数:
        parameters - 一个字典,包含了以下参数:
            parameters["W" + str(l)] = Wl
            parameters["b" + str(l)] = bl
    返回:
        v - 一个字典变量,包含了以下参数:
            v["dW" + str(l)] = dWl的速度
            v["db" + str(l)] = dbl的速度
    
    """
    L = len(parameters) // 2 #神经网络的层数
    v = {}
    
    for l in range(L):
        v["dW" + str(l + 1)] = np.zeros_like(parameters["W" + str(l + 1)])
        v["db" + str(l + 1)] = np.zeros_like(parameters["b" + str(l + 1)])
    
    return v

 

 

 

def update_parameters_with_momentun(parameters,grads,v,beta,learning_rate):
    """
    使用动量更新参数
    参数:
        parameters - 一个字典类型的变量,包含了以下字段:
            parameters["W" + str(l)] = Wl
            parameters["b" + str(l)] = bl
        grads - 一个包含梯度值的字典变量,具有以下字段:
            grads["dW" + str(l)] = dWl
            grads["db" + str(l)] = dbl
        v - 包含当前速度的字典变量,具有以下字段:
            v["dW" + str(l)] = ...
            v["db" + str(l)] = ...
        beta - 超参数,动量,实数
        learning_rate - 学习率,实数
    返回:
        parameters - 更新后的参数字典
        v - 包含了更新后的速度变量
    """
    L = len(parameters) // 2 
    for l in range(L):
        #计算速度
        v["dW" + str(l + 1)] = beta * v["dW" + str(l + 1)] + (1 - beta) * grads["dW" + str(l + 1)]
        v["db" + str(l + 1)] = beta * v["db" + str(l + 1)] + (1 - beta) * grads["db" + str(l + 1)]
        
        #更新参数
        parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * v["dW" + str(l + 1)]
        parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * v["db" + str(l + 1)]
    
    return parameters,v

Adam算法

 

 

 

def initialize_adam(parameters):
    """
    初始化v和s,它们都是字典类型的变量,都包含了以下字段:
        - keys: "dW1", "db1", ..., "dWL", "dbL" 
        - values:与对应的梯度/参数相同维度的值为零的numpy矩阵
    
    参数:
        parameters - 包含了以下参数的字典变量:
            parameters["W" + str(l)] = Wl
            parameters["b" + str(l)] = bl
    返回:
        v - 包含梯度的指数加权平均值,字段如下:
            v["dW" + str(l)] = ...
            v["db" + str(l)] = ...
        s - 包含平方梯度的指数加权平均值,字段如下:
            s["dW" + str(l)] = ...
            s["db" + str(l)] = ...
    
    """
    
    L = len(parameters) // 2
    v = {}
    s = {}
    
    for l in range(L):
        v["dW" + str(l + 1)] = np.zeros_like(parameters["W" + str(l + 1)])
        v["db" + str(l + 1)] = np.zeros_like(parameters["b" + str(l + 1)])
        
        s["dW" + str(l + 1)] = np.zeros_like(parameters["W" + str(l + 1)])
        s["db" + str(l + 1)] = np.zeros_like(parameters["b" + str(l + 1)])
    
    return (v,s)
np.arange(24).reshape(4,6)

 

 

def update_parameters_with_adam(parameters,grads,v,s,t,learning_rate=0.01,beta1=0.9,beta2=0.999,epsilon=1e-8):
    """
    使用Adam更新参数
    
    参数:
        parameters - 包含了以下字段的字典:
            parameters['W' + str(l)] = Wl
            parameters['b' + str(l)] = bl
        grads - 包含了梯度值的字典,有以下key值:
            grads['dW' + str(l)] = dWl
            grads['db' + str(l)] = dbl
        v - Adam的变量,第一个梯度的移动平均值,是一个字典类型的变量
        s - Adam的变量,平方梯度的移动平均值,是一个字典类型的变量
        t - 当前迭代的次数
        learning_rate - 学习率
        beta1 - 动量,超参数,用于第一阶段,使得曲线的Y值不从0开始(参见天气数据的那个图)
        beta2 - RMSprop的一个参数,超参数
        epsilon - 防止除零操作(分母为0)
    
    返回:
        parameters - 更新后的参数
        v - 第一个梯度的移动平均值,是一个字典类型的变量
        s - 平方梯度的移动平均值,是一个字典类型的变量
    """
    L = len(parameters) // 2
    v_corrected = {} #偏差修正后的值
    s_corrected = {} #偏差修正后的值
    
    for l in range(L):
        #梯度的移动平均值,输入:"v , grads , beta1",输出:" v "
        v["dW" + str(l + 1)] = beta1 * v["dW" + str(l + 1)] + (1 - beta1) * grads["dW" + str(l + 1)]
        v["db" + str(l + 1)] = beta1 * v["db" + str(l + 1)] + (1 - beta1) * grads["db" + str(l + 1)]
        
        #计算第一阶段的偏差修正后的估计值,输入"v , beta1 , t" , 输出:"v_corrected"
        v_corrected["dW" + str(l + 1)] = v["dW" + str(l + 1)] / (1 - np.power(beta1,t))
        v_corrected["db" + str(l + 1)] = v["db" + str(l + 1)] / (1 - np.power(beta1,t))
    
        #计算平方梯度的移动平均值,输入:"s, grads , beta2",输出:"s"
        s["dW" + str(l + 1)] = beta2 * s["dW" + str(l + 1)] + (1 - beta2) * np.square(grads["dW" + str(l + 1)])
        s["db" + str(l + 1)] = beta2 * s["db" + str(l + 1)] + (1 - beta2) * np.square(grads["db" + str(l + 1)])
         
        #计算第二阶段的偏差修正后的估计值,输入:"s , beta2 , t",输出:"s_corrected"
        s_corrected["dW" + str(l + 1)] = s["dW" + str(l + 1)] / (1 - np.power(beta2,t))
        s_corrected["db" + str(l + 1)] = s["db" + str(l + 1)] / (1 - np.power(beta2,t))
        
        #更新参数,输入: "parameters, learning_rate, v_corrected, s_corrected, epsilon". 输出: "parameters".
        parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * (v_corrected["dW" + str(l + 1)] / np.sqrt(s_corrected["dW" + str(l + 1)] + epsilon))
        parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * (v_corrected["db" + str(l + 1)] / np.sqrt(s_corrected["db" + str(l + 1)] + epsilon))
    
    return (parameters,v,s)

 

 

现在用类似之前的模型来写个程序

def model(X,Y,layers_dims,optimizer,learning_rate=0.0007,
          mini_batch_size=64,beta=0.9,beta1=0.9,beta2=0.999,
          epsilon=1e-8,num_epochs=10000,print_cost=True,is_plot=True):
    
    """
    可以运行在不同优化器模式下的3层神经网络模型。
    
    参数:
        X - 输入数据,维度为(2,输入的数据集里面样本数量)
        Y - 与X对应的标签
        layers_dims - 包含层数和节点数量的列表
        optimizer - 字符串类型的参数,用于选择优化类型,【 "gd" | "momentum" | "adam" 】
        learning_rate - 学习率
        mini_batch_size - 每个小批量数据集的大小
        beta - 用于动量优化的一个超参数
        beta1 - 用于计算梯度后的指数衰减的估计的超参数
        beta1 - 用于计算平方梯度后的指数衰减的估计的超参数
        epsilon - 用于在Adam中避免除零操作的超参数,一般不更改
        num_epochs - 整个训练集的遍历次数,(视频2.9学习率衰减,1分55秒处,视频中称作“代”),相当于之前的num_iteration
        print_cost - 是否打印误差值,每遍历1000次数据集打印一次,但是每100次记录一个误差值,又称每1000代打印一次
        is_plot - 是否绘制出曲线图
        
    返回:
        parameters - 包含了学习后的参数
        
    """
    L = len(layers_dims)
    costs = []
    t = 0 #每学习完一个minibatch就增加1
    seed = 10 #随机种子
    
    #初始化参数
    parameters = opt_utils.initialize_parameters(layers_dims)
    
    #选择优化器  注意注意,重点操作!优化用的是啥就指望这个呢!这里是初始化V与S
if optimizer == "gd": pass #不使用任何优化器,直接使用梯度下降法 elif optimizer == "momentum": v = initialize_velocity(parameters) #使用动量 elif optimizer == "adam": v, s = initialize_adam(parameters)#使用Adam优化 else: print("optimizer参数错误,程序退出。") exit(1) #开始学习 for i in range(num_epochs): #定义随机 minibatches,我们在每次遍历数据集之后增加种子以重新排列数据集,使每次数据的顺序都不同 seed = seed + 1 minibatches = random_mini_batches(X,Y,mini_batch_size,seed) for minibatch in minibatches: #选择一个minibatch (minibatch_X,minibatch_Y) = minibatch #前向传播 A3 , cache = opt_utils.forward_propagation(minibatch_X,parameters) #计算误差 cost = opt_utils.compute_cost(A3 , minibatch_Y) #反向传播 grads = opt_utils.backward_propagation(minibatch_X,minibatch_Y,cache) #更新参数 注意注意 重点操作第二步,这里头是更新不同的参数 if optimizer == "gd": parameters = update_parameters_with_gd(parameters,grads,learning_rate) elif optimizer == "momentum": parameters, v = update_parameters_with_momentun(parameters,grads,v,beta,learning_rate) elif optimizer == "adam": t = t + 1 #这个t是用来修正v和s的corrected的 parameters , v , s = update_parameters_with_adam(parameters,grads,v,s,t,learning_rate,beta1,beta2,epsilon) #记录误差值 if i % 100 == 0: costs.append(cost) #是否打印误差值 if print_cost and i % 1000 == 0: print("" + str(i) + "次遍历整个数据集,当前误差值:" + str(cost)) #是否绘制曲线图 if is_plot: plt.plot(costs) plt.ylabel('cost') plt.xlabel('epochs (per 100)') plt.title("Learning rate = " + str(learning_rate)) plt.show() return parameters

普通

#使用普通的梯度下降
layers_dims = [train_X.shape[0],5,2,1]
parameters = model(train_X, train_Y, layers_dims, optimizer="gd",is_plot=True)

adam优化后

layers_dims = [train_X.shape[0], 5, 2, 1]
#使用Adam优化的梯度下降
parameters = model(train_X, train_Y, layers_dims, optimizer="adam",is_plot=True)

预测(这里一直不是很懂,回头再看看opt_utils的代码研究研究)

#预测
preditions = opt_utils.predict(train_X,train_Y,parameters)

#绘制分类图
plt.title("Model with Adam optimization")
axes = plt.gca()
axes.set_xlim([-1.5, 2.5])
axes.set_ylim([-1, 1.5])
opt_utils.plot_decision_boundary(lambda x: opt_utils.predict_dec(parameters, x.T), train_X, train_Y)

 

 

 

 

opt_utils的代码

  1 # -*- coding: utf-8 -*-
  2 
  3 #opt_utils.py
  4 
  5 import numpy as np
  6 import matplotlib.pyplot as plt
  7 import sklearn
  8 import sklearn.datasets
  9 
 10 def sigmoid(x):
 11     """
 12     Compute the sigmoid of x
 13  
 14     Arguments:
 15     x -- A scalar or numpy array of any size.
 16  
 17     Return:
 18     s -- sigmoid(x)
 19     """
 20     s = 1/(1+np.exp(-x))
 21     return s
 22  
 23 def relu(x):
 24     """
 25     Compute the relu of x
 26  
 27     Arguments:
 28     x -- A scalar or numpy array of any size.
 29  
 30     Return:
 31     s -- relu(x)
 32     """
 33     s = np.maximum(0,x)
 34     
 35     return s
 36 
 37 
 38 def load_params_and_grads(seed=1):
 39     np.random.seed(seed)
 40     W1 = np.random.randn(2,3)
 41     b1 = np.random.randn(2,1)
 42     W2 = np.random.randn(3,3)
 43     b2 = np.random.randn(3,1)
 44  
 45     dW1 = np.random.randn(2,3)
 46     db1 = np.random.randn(2,1)
 47     dW2 = np.random.randn(3,3)
 48     db2 = np.random.randn(3,1)
 49     
 50     return W1, b1, W2, b2, dW1, db1, dW2, db2
 51     
 52 def initialize_parameters(layer_dims):
 53     """
 54     Arguments:
 55     layer_dims -- python array (list) containing the dimensions of each layer in our network
 56     
 57     Returns:
 58     parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
 59                     W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
 60                     b1 -- bias vector of shape (layer_dims[l], 1)
 61                     Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l])
 62                     bl -- bias vector of shape (1, layer_dims[l])
 63                     
 64     Tips:
 65     - For example: the layer_dims for the "Planar Data classification model" would have been [2,2,1]. 
 66     This means W1's shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it!
 67     - In the for loop, use parameters['W' + str(l)] to access Wl, where l is the iterative integer.
 68     """
 69     
 70     np.random.seed(3)
 71     parameters = {}
 72     L = len(layer_dims) # number of layers in the network
 73  
 74     for l in range(1, L):
 75         parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1])*  np.sqrt(2 / layer_dims[l-1])
 76         parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
 77         
 78         assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1])
 79         assert(parameters['W' + str(l)].shape == layer_dims[l], 1)
 80         
 81     return parameters
 82     
 83 def forward_propagation(X, parameters):
 84     """
 85     Implements the forward propagation (and computes the loss) presented in Figure 2.
 86     
 87     Arguments:
 88     X -- input dataset, of shape (input size, number of examples)
 89     parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
 90                     W1 -- weight matrix of shape ()
 91                     b1 -- bias vector of shape ()
 92                     W2 -- weight matrix of shape ()
 93                     b2 -- bias vector of shape ()
 94                     W3 -- weight matrix of shape ()
 95                     b3 -- bias vector of shape ()
 96     
 97     Returns:
 98     loss -- the loss function (vanilla logistic loss)
 99     """
100     
101     # retrieve parameters
102     W1 = parameters["W1"]
103     b1 = parameters["b1"]
104     W2 = parameters["W2"]
105     b2 = parameters["b2"]
106     W3 = parameters["W3"]
107     b3 = parameters["b3"]
108     
109     # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
110     z1 = np.dot(W1, X) + b1
111     a1 = relu(z1)
112     z2 = np.dot(W2, a1) + b2
113     a2 = relu(z2)
114     z3 = np.dot(W3, a2) + b3
115     a3 = sigmoid(z3)
116     
117     cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3)
118     
119     return a3, cache
120  
121 def backward_propagation(X, Y, cache):
122     """
123     Implement the backward propagation presented in figure 2.
124     
125     Arguments:
126     X -- input dataset, of shape (input size, number of examples)
127     Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
128     cache -- cache output from forward_propagation()
129     
130     Returns:
131     gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
132     """
133     m = X.shape[1]
134     (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) = cache
135     
136     dz3 = 1./m * (a3 - Y)
137     dW3 = np.dot(dz3, a2.T)
138     db3 = np.sum(dz3, axis=1, keepdims = True)
139     
140     da2 = np.dot(W3.T, dz3)
141     dz2 = np.multiply(da2, np.int64(a2 > 0))
142     dW2 = np.dot(dz2, a1.T)
143     db2 = np.sum(dz2, axis=1, keepdims = True)
144     
145     da1 = np.dot(W2.T, dz2)
146     dz1 = np.multiply(da1, np.int64(a1 > 0))
147     dW1 = np.dot(dz1, X.T)
148     db1 = np.sum(dz1, axis=1, keepdims = True)
149     
150     gradients = {"dz3": dz3, "dW3": dW3, "db3": db3,
151                  "da2": da2, "dz2": dz2, "dW2": dW2, "db2": db2,
152                  "da1": da1, "dz1": dz1, "dW1": dW1, "db1": db1}
153     
154     return gradients
155  
156 def compute_cost(a3, Y):
157     
158     """
159     Implement the cost function
160     
161     Arguments:
162     a3 -- post-activation, output of forward propagation
163     Y -- "true" labels vector, same shape as a3
164     
165     Returns:
166     cost - value of the cost function
167     """
168     m = Y.shape[1]
169     
170     logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)
171     cost = 1./m * np.sum(logprobs)
172     
173     return cost
174  
175 def predict(X, y, parameters):
176     """
177     This function is used to predict the results of a  n-layer neural network.
178     
179     Arguments:
180     X -- data set of examples you would like to label
181     parameters -- parameters of the trained model
182     
183     Returns:
184     p -- predictions for the given dataset X
185     """
186     
187     m = X.shape[1]
188     p = np.zeros((1,m), dtype = np.int)
189     
190     # Forward propagation
191     a3, caches = forward_propagation(X, parameters)
192     
193     # convert probas to 0/1 predictions
194     for i in range(0, a3.shape[1]):
195         if a3[0,i] > 0.5:
196             p[0,i] = 1
197         else:
198             p[0,i] = 0
199  
200     # print results
201  
202     #print ("predictions: " + str(p[0,:]))
203     #print ("true labels: " + str(y[0,:]))
204     print("Accuracy: "  + str(np.mean((p[0,:] == y[0,:]))))
205     
206     return p
207  
208 def predict_dec(parameters, X):
209     """
210     Used for plotting decision boundary.
211     
212     Arguments:
213     parameters -- python dictionary containing your parameters 
214     X -- input data of size (m, K)
215     
216     Returns
217     predictions -- vector of predictions of our model (red: 0 / blue: 1)
218     """
219     
220     # Predict using forward propagation and a classification threshold of 0.5
221     a3, cache = forward_propagation(X, parameters)
222     predictions = (a3 > 0.5)
223     return predictions
224  
225 def plot_decision_boundary(model, X, y):
226     # Set min and max values and give it some padding
227     x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
228     y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
229     h = 0.01
230     # Generate a grid of points with distance h between them
231     xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
232     # Predict the function value for the whole grid
233     Z = model(np.c_[xx.ravel(), yy.ravel()])
234     Z = Z.reshape(xx.shape)
235     # Plot the contour and training examples
236     plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
237     plt.ylabel('x2')
238     plt.xlabel('x1')
239     plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
240     plt.show()
241  
242 def load_dataset(is_plot = True):
243     np.random.seed(3)
244     train_X, train_Y = sklearn.datasets.make_moons(n_samples=300, noise=.2) #300 #0.2 
245     # Visualize the data
246     if is_plot:
247         plt.scatter(train_X[:, 0], train_X[:, 1], c=train_Y, s=40, cmap=plt.cm.Spectral);
248     train_X = train_X.T
249     train_Y = train_Y.reshape((1, train_Y.shape[0]))
250     
251     return train_X, train_Y
opt_utils详细代码

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM