本文参考下列网站整理而来:
http://blog.sina.com.cn/s/blog_6fb8aa0d0101ne2n.html
http://blog.sina.com.cn/s/blog_c569e0f60102xisj.html
在信号处理的学习中,有一些与谱有关的概念,如频谱、幅度谱、功率谱和能量谱等,常常让人很糊涂,搞不清其中的关系。这里主要从概念上厘清其间的区别。对一个时域信号进行傅里叶变换,就可以得到的信号的频谱。频谱是一个以频率为自变量的函数。频谱在每一个频率点的取值是一个复数。一个复数由模和辐角唯一地确定,所以可将频谱分解为幅度谱(即复数的模关于频率的函数)和相位谱(即复数的辐角关于频率的函数)。那么这个幅度谱中的值具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。
那么,什么是功率谱呢?什么又是能量谱呢?功率谱或能量谱与信号的频谱有什么关系呢?
因为信号可能是能量信号,也可能是功率信号。对于能量信号,常用能量谱来描述。所谓的能量谱,也称为能量谱密度,是指用密度的概念表示信号能量在各频率点的分布情况。也即是说,对能量谱在频域上积分就可以得到信号的能量。能量谱是信号幅度谱的模的平方,其量纲是焦/赫。对于功率信号,常用功率谱来描述。所谓的功率谱,也称为功率谱密度,是指用密度的概念表示信号功率在各频率点的分布情况。也就是说,对功率谱在频域上积分就可以得到信号的功率。
关于FFT分析的一些解释说明,对于初次使用matlab中的 fft() 函数有帮助
https://blog.csdn.net/ZSZ_shsf/article/details/54582963
FFT是离散傅立叶变换的快速算法,虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。
现在说说FFT结果的具体物理意义。
一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍。采样得到的数字信号,就可以做FFT变换了。N个采样点, 经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT 运算,通常N取2的整数次方。
假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。
而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如点N所表示的频率为:Fn=(N-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz(应该是指的信号的频率)。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。
假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=sqrt(a∗a+b∗b),相位Pn=atan2(b,a)。根据以上的结果, 就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:
An/(N/2)∗cos(2∗pi∗Fn∗t+Pn)An/(N/2)∗cos(2∗pi∗Fn∗t+Pn),即2∗An/N∗cos(2∗pi∗Fn∗t+Pn)2∗An/N∗cos(2∗pi∗Fn∗t+Pn)。 对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。