Win10下Pytorch的安装和使用[斗之力三段]


简介:

看到paper的代码是用Pytorch实现的,试图理解代码,但是看不懂,只能先学一些基础教程来帮助理解。笔记本电脑配置较低,所以安装一个没有CUDA的版本就可以了。安装完之后,就可以跟着教程边学边做了。

参考教程:https://morvanzhou.github.io/tutorials/machine-learning/torch/

1.安装:

第一步:安装anaconda,就是安装python

第二步:在cmd中直接输入

pip3 install http://download.pytorch.org/whl/cpu/torch-1.0.0-cp36-cp36m-win_amd64.whl
pip3 install torchvision

第三步:等一会,等二会,等三会,…,安装好了

参考:https://pytorch.org/get-started/locally/

2.使用:

安装anaconda会附赠一个Jupyter Notebook,用这个编写python代码赏心悦目。像Pytorch或是TensorFlow使用的数据都是张量形式,这点需要注意。

这里直接贴一个教程里的代码。理解起来还是不容易的,要首先稍微了解一下python的基本用法,之后要把代码里的逻辑慢慢理清楚,不能怕麻烦,万事开头难。

import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F # 激励函数都在这 x
= torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1) y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1) # 画图 %matplotlib inline plt.scatter(x.data.numpy(), y.data.numpy()) class Net(torch.nn.Module): # 继承 torch 的 Module def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() # 继承 __init__ 功能 # 定义每层用什么样的形式 self.hidden = torch.nn.Linear(n_feature, n_hidden) # 隐藏层线性输出 self.predict = torch.nn.Linear(n_hidden, n_output) # 输出层线性输出 def forward(self, x): # 这同时也是 Module 中的 forward 功能 # 正向传播输入值, 神经网络分析出输出值 x = F.relu(self.hidden(x)) # 激励函数(隐藏层的线性值) x = self.predict(x) # 输出值 return x net = Net(n_feature=1, n_hidden=10, n_output=1) print(net) # net 的结构 # optimizer 是训练的工具 optimizer = torch.optim.SGD(net.parameters(), lr=0.2) # 传入 net 的所有参数, 学习率 loss_func = torch.nn.MSELoss() # 预测值和真实值的误差计算公式 (均方差) plt.ion() # 画图 plt.show() for t in range(200): prediction = net(x) # 喂给 net 训练数据 x, 输出预测值 loss = loss_func(prediction, y) # 计算两者的误差 optimizer.zero_grad() # 清空上一步的残余更新参数值 loss.backward() optimizer.step() if t % 5 == 0: # plot and show learning process plt.cla() plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'}) plt.pause(0.1)

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM