中心极限定理(Central Limit Theorem)


中心极限定理:每次从总体中抽取容量为n的简单随机样本,这样抽取很多次后,如果样本容量很大,样本均值的抽样分布近似服从正态分布(期望为 [公式] ,标准差为 [公式])。

(注:总体数据需独立同分布)

 

那么样本容量n应该达到多大时,才能应用中心极限定理呢?答:对于大多数应用,当样本容量大于等于30时就可以。(当总体分布非对称时,样本容量最好大于50。)

 

从下图中可以看出,不管总体是什么样的分布情况,当样本量达到30的时候,样本均值的抽样分布就是钟形分布了,且样本均值约等于总体均值:

 

 

中心极限定理的作用:用样本数据估计总体参数(区间估计)。

 

附:

20世纪初概率学家大都称呼该定理为极限定理(Limit Theorem),由于该定理在概率论中处于如此重要的中心位置,如此之多的概率学武林高手为它魂牵梦绕,于是数学家波利亚(G.Polya)于1920年在该定理前面冠以"中心"一词,由此后续人们都称之为中心极限定理。


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM