Spark快速获得CrossValidator的最佳模型参数


Spark提供了便利的Pipeline模型,可以轻松的创建自己的学习模型。

但是大部分模型都是需要提供参数的,如果不提供就是默认参数,那么怎么选择参数就是一个比较常见的问题。Spark提供在org.apache.spark.ml.tuning包下提供了模型选择器,可以替换参数然后比较模型输出。

目前有CrossValidator和TrainValidationSplit两种,比如一个文本情感预测模型。

Pipeline只有三步,第一步切词,第二步HashingTF,第三步NB分类

Pipeline pipeline = new Pipeline() .setStages(new PipelineStage[]{tokenizer, hashingTF, naiveBayes}); ParamMap[] paramMaps = new ParamGridBuilder() .addGrid(hashingTF.numFeatures(), new int[]{10000, 100000, 500000, 1000000}) .build(); CrossValidator cv = new CrossValidator() .setEstimator(pipeline) .setEvaluator(new BinaryClassificationEvaluator()) .setEstimatorParamMaps(paramMaps);

其中HashingTF的参数选择非常重要,我们这里就随便尝试几种,然后放在CrossValidator中去。

最后我们会获得一个CrossValidatorModel类,这里有两种选择。

第一种是自己手动获取其中的参数,因为bestModel的参数就是我们最后选择的参数

Pipeline bestPipeline = (Pipeline) model.bestModel().parent(); PipelineStage stage = bestPipeline.getStages()[1]; stage.extractParamMap().get(stage.getParam("numFeatures"));

这种方法可以获得值,但是需要根据你模型情况修改获取的位置。

如果你只是想知道最佳参数是多少,并不是需要在上下文中使用,那还有一个更简单的方法。

修改log4j的配置,添加

log4j.logger.org.apache.spark.ml.tuning.TrainValidationSplit=INFO log4j.logger.org.apache.spark.ml.tuning.CrossValidator=INFO

效果如下:

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM