稀疏矩阵相乘-Python版


                                      稀疏矩阵相乘-Python版

Given two sparse matrices A and B, return the result of AB.

You may assume that A's column number is equal to B's row number.

Example:


    
    
   
  
  
  1. A = [
  2. [ 1, 0, 0],
  3. [-1, 0, 3]
  4. ]
  5. B = [
  6. [ 7, 0, 0 ],
  7. [ 0, 0, 0 ],
  8. [ 0, 0, 1 ]
  9. ]
  10. | 1 0 0 | | 7 0 0 | | 7 0 0 |
  11. AB = | -1 0 3 | x | 0 0 0 | = | -7 0 3 |
  12. | 0 0 1 |

使用传统的矩阵相乘的算法肯定会处理大量的0乘0的无用功,所以我们适当的优化算法,我们知道一个 i x k 的矩阵A乘以一个 k x j 的矩阵B会得到一个 i x j 大小的矩阵C,那么我们来看结果矩阵中的某个元素C[i][j]是怎么来的,起始是A[i][0]*B[0][j] + A[i][1]*B[1][j] + ... + A[i][k]*B[k][j],那么为了不重复计算0乘0,我们首先遍历A数组,要确保A[i][k]不为0,才继续计算,然后我们遍历B矩阵的第k行,如果B[K][J]不为0,我们累加结果矩阵res[i][j] += A[i][k] * B[k][j]; 这样我们就能高效的算出稀疏矩阵的乘法,参见代码如下:


    
    
   
  
  
  1. # -*- coding: utf-8 -*-
  2. """
  3. Created on Sun Sep 02 15:10:34 2018
  4. @author: Administrator
  5. """
  6. def SparseMatrixMultiply(A, B): #减少计算次数
  7. res = [[ 0 for i in range(len(B[ 0]))] for j in range(len(A))]
  8. for i in range(len(A)):
  9. for j in range(len(A[ 0])):
  10. if A[i][j] != 0: #non-zero
  11. for k in range(len(B[ 0])):
  12. if B[j][k] != 0: #non-zero
  13. res[i][k] += A[i][j] * B[j][k]
  14. return res
  15. if __name__ == '__main__':
  16. A = [[ 1, 0, 0],[ -1, 0, 3]]
  17. B = [[ 7, 0, 0],[ 0, 0, 0],[ 0, 0, 1]]
  18. result = SparseMatrixMultiply(A, B)
  19. print(result)

三元组方法

typedef struct NODE{ //定义稀疏矩阵结点       
 int i;       //行
 int j;       //列
 int data;   //值
} Node;
typedef struct MATRIX{ //定义稀疏矩阵(可以快速访问)       
 int mu, nu, tu;      // mu为矩阵行数,nu为矩阵列数,tu为矩阵中非零元素的个数
 Node matrix[MAXSIZE+1];       
 int rpos[MAXR+1];
} Matrix; 

算法时间复杂度为:O(A->tu*B->tu/B->mu)

此外还有十字链表法。

Python科学计算包scipy

import scipy as sp

a = sp.sparse.linalg.norm(S, 'fro')


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM