Tenengrad评价函数
Tenengrad函数是一种由Tenenbaum提出的,基于梯度的常用图像清晰度评价函数。特南梯度。
在图像处理中,一般认为对焦好的图像具有更尖锐的边缘,故具有更大的梯度函数值。
Tenengrad函数使用Sobel算子提取水平和垂直方向的梯度值,求其平方和作为评价函数。
具体过程如下:
设Sobel卷积核为,则图像
在点
处的梯度
定义该图像的Tenengrad值为:(其中为图像中像素总数)这个求了平均
或不求平均:评价函数F(k):
其中:T是给定的边缘检测阈值。

#include <cv.h> #include <highgui.h> #include<iostream> using namespace std; double Tenegrad(IplImage* src)//Tenegrad 标准 { assert(src->nChannels==8); int row=src->height;//height对应行数 int col=src->width; //width对应行数 int widthstep=src->widthStep; char *data=src->imageData; double S=0; for(int x = 1;x<row-1;x++) { char *pre_row=data +(x-1)*widthstep; char *cur_row=data +x*widthstep; char *nex_row=data +(x+1)*widthstep; int Sx,Sy; for(int y = 1;y<col-1;y++) { //**********************************************/ //当前邻域: //pre_row[y-1],pre_row[y],pre_row[y+1]; //cur_row[y-1],cur_row[y],cur_row[y+1]; //nex_row[y-1],nex_row[y],nex_row[y+1]; //Gx =-1,0,1 Gy =1, 2, 1 // -2,0,2 0, 0, 0 // -1,0,1 -1,-2,-1 //**********************************************/ Sx=(uchar)pre_row[y+1]+2*(uchar)cur_row[y+1]+(uchar)nex_row[y+1]//一定要转为uchar -(uchar)pre_row[y-1]-2*(uchar)cur_row[y-1]-(uchar)nex_row[y-1]; Sy=(uchar)nex_row[y-1]+2*(uchar)nex_row[y]+(uchar)nex_row[y+1] -(uchar)pre_row[y-1]-2*(uchar)pre_row[y]-(uchar)pre_row[y+1]; S+=Sx*Sx+Sy*Sy; } } return S/(row-2)/(col-2); } int main() { IplImage* src = cvLoadImage("d:\\lena.bmp",0); cvNamedWindow("src"); cvShowImage("src",src); cout<<Tenegrad(src); cvWaitKey(0); cvReleaseImage(&src); cvDestroyWindow("src"); return 0; }
Laplacian 梯度函数
利用Laplacian算子对图像进行模板卷积得到图像的高频分量,然后可以对图像的高频分量求和,用高频分量和作为图像的清晰度评价标准。
对于一个M×N像素的图像,每个像素的亮度为g(x,y),进行滤波模板卷积后每个像素点值为z(x,y)。则图像清晰度评价函数:
Laplacian算子:z(x,y)=g(x-1,y)+g(x+1,y)+g(x,y-1)+g(x,y+1)一4g(x,y)
梯度算子为水平方向和垂直方向两个,高通滤波算子只有一个
SMD(灰度差分绝对值之和,Sum of Modulus of gray Difference )函数
用差分绝对值代替乘方和开方,即对点(x,y)及其邻近点的灰度作差分运算,提取该点灰度值的变化大小,得出图像灰度差分绝对值之和算子。
灰度差分绝对值之和具有较好的计算性能,但其缺点也很明显,即在焦点附近灵敏度不高,即该函数在极值点附近过于平坦,从而导致聚焦精度难以提高。
在文章《一种快速高灵敏度聚焦评价函数》中提出了一种新的评价函数,称之为灰度差分绝对值乘积法,即对每一个像素领域两个灰度差相乘后再逐个像素累加。
【参考文献】
Tenengrad评价函数 - CSDN博客 https://blog.csdn.net/u010839382/article/details/41049895
图像清晰度的评价指标 - CSDN博客 https://blog.csdn.net/charlene_bo/article/details/72673490
SMD相关光学显微镜自动聚焦的技术研究_百度学术
一种基于高通滤波评价函数的自动对焦方法_百度学术