sklearn 数据预处理1: StandardScaler


转载自:https://blog.csdn.net/u012609509/article/details/78554709

StandardScaler

作用:去均值和方差归一化。且是针对每一个特征维度来做的,而不是针对样本。 StandardScaler对每列分别标准化,因为shape of data: [n_samples, n_features]
【注:】
并不是所有的标准化都能给estimator带来好处。
“Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance).”

实例代码

# coding=utf-8
# 统计训练集的 mean 和 std 信息
from sklearn.preprocessing import StandardScaler
import numpy as np


def test_algorithm():
    np.random.seed(123)
    print('use sklearn')
    # 注:shape of data: [n_samples, n_features]
    data = np.random.randn(10, 4)
    scaler = StandardScaler()
    scaler.fit(data)
    trans_data = scaler.transform(data)
    print('original data: ')
    print data
    print('transformed data: ')
    print trans_data
    print('scaler info: scaler.mean_: {}, scaler.var_: {}'.format(scaler.mean_, scaler.var_))
    print('\n')

    print('use numpy by self')
    mean = np.mean(data, axis=0)
    std = np.std(data, axis=0)
    var = std * std
    print('mean: {}, std: {}, var: {}'.format(mean, std, var))
    # numpy 的广播功能
    another_trans_data = data - mean
    # 注:是除以标准差
    another_trans_data = another_trans_data / std
    print('another_trans_data: ')
    print another_trans_data


if __name__ == '__main__':
    test_algorithm()

   
   
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

程序的输出如下:

use sklearn
    original data:
    [[-1.0856306 0.99734545 0.2829785 - 1.50629471] [-0.57860025 1.65143654 - 2.42667924 - 0.42891263] [1.26593626 - 0.8667404 - 0.67888615 - 0.09470897] [1.49138963 - 0.638902 - 0.44398196 - 0.43435128] [2.20593008 2.18678609 1.0040539 0.3861864] [0.73736858 1.49073203 - 0.93583387 1.17582904] [-1.25388067 - 0.6377515 0.9071052 - 1.4286807] [-0.14006872 - 0.8617549 - 0.25561937 - 2.79858911] [-1.7715331 - 0.69987723 0.92746243 - 0.17363568] [0.00284592 0.68822271 - 0.87953634 0.28362732]]
    transformed
    data:
    [[-0.94511643 0.58665507 0.5223171 - 0.93064483] [-0.53659117 1.16247784 - 2.13366794 0.06768082] [0.9495916 - 1.05437488 - 0.42049501 0.3773612] [1.13124423 - 0.85379954 - 0.19024378 0.06264126] [1.70696485 1.63376764 1.22910949 0.8229693] [0.52371324 1.02100318 - 0.67235312 1.55466934] [-1.08067913 - 0.85278672 1.13408114 - 0.858726] [-0.18325687 - 1.04998594 - 0.00561227 - 2.1281129] [-1.49776284 - 0.9074785 1.15403514 0.30422599] [-0.06810748 0.31452186 - 0.61717074 0.72793583]]
    scaler info: scaler.mean_: [0.08737571  0.33094968 - 0.24989369 - 0.50195303], scaler.var_: [1.54038781  1.29032409
                                                                                          1.04082479  1.16464894]

    use numpy by self
    mean: [0.08737571  0.33094968 - 0.24989369 - 0.50195303], std: [1.24112361  1.13592433  1.02020821
                                                                    1.07918902], var: [1.54038781  1.29032409
                                                                                       1.04082479  1.16464894]
    another_trans_data:
    [[-0.94511643 0.58665507 0.5223171 - 0.93064483] [-0.53659117 1.16247784 - 2.13366794 0.06768082] [0.9495916 - 1.05437488 - 0.42049501 0.3773612] [1.13124423 - 0.85379954 - 0.19024378 0.06264126] [1.70696485 1.63376764 1.22910949 0.8229693] [0.52371324 1.02100318 - 0.67235312 1.55466934] [-1.08067913 - 0.85278672 1.13408114 - 0.858726] [-0.18325687 - 1.04998594 - 0.00561227 - 2.1281129] [-1.49776284 - 0.9074785 1.15403514 0.30422599] [-0.06810748 0.31452186 - 0.61717074 0.72793583]]
   
   
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61

参考网址


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM